学霸在知识的海洋里开快艇,我在知识的海洋里喂鲨鱼
为了不被喂鲨鱼,我又来更新学习了,补充一点pandas的知识点
Python之pandas(二)
Python之pandas
想要多学习点知识的可以去看看,不想就算了(doge)
import pandas as pd
ser_obj=pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
ser_obj
ser_obj[3] #使用索引位置来获取数据
ser_obj['c'] #使用索引名称来获取数据
ser_obj[2:4] #使用位置索引进行切片
ser_obj['c':'e'] #使用索引名称进行切片
ser_obj[[0,2,4]] #通过不连续位置索引获取数据集
ser_obj[['a','c','d']] #通过不连续索引名称获取数据集
ser_bool=ser_obj>2 #布尔型索引,返回与模板中True位置对应的元素
ser_bool
ser_obj[ser_bool]
DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表。
或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matlab也可以用cell存放 多类型数据)
DataFrame的单元格可以存放数值、字符串等,这和excel表很像
同时DataFrame可以设置列名columns与行名index,可以通过像matlab一样通过位置获取数据也可以通过列名和行名定位,具体方法在后面细说。
import numpy as np
arr=np.arange(12).reshape(3,4)
df_obj=pd.DataFrame(arr,columns=['a','b','c','d'])
df_obj
df_obj['b'] #通过列索引进行切片
type(df_obj['b']) #查看数据类型
df_obj[['b','d']] #使用不连续列索引名称获取数据
df_obj[:2] #使用行索引进行切片(切片的意思就是切一片嘛,一片数据)
df_obj[:3][['b','d']] #使用列索引和行索引进行切片