【youcans 的 OpenCV 例程 200 篇】106. 退化图像的逆滤波

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中


【youcans 的 OpenCV 例程 200 篇】106. 退化图像的逆滤波


6. 退化图像复原

图像复原是对图像退化的过程进行估计,并补偿退化过程造成的失真,以便获得未经退化的原始图像或原始图像的最优估值,从而改善图像质量的一种方法。

典型的图像复原方法是根据图像退化的先验知识建立退化模型,以退化模型为基础采用滤波等手段进行处理,使复原后的图像符合一定的准则,达到改善图像质量的目的。

因此,图像复原是沿着质量降低的逆过程来重现真实的原始图像,通过去模糊函数而去除图像模糊。

6.1 退化图像的逆滤波(Inverse filter)

图像退化表示为退化算子 H \mathcal{H} H, 退化函数可以用观察法、试验法或建模法估计,则通过逆滤波就可以直接实现图像复原。用退化图像的傅里叶变换除以退化函数的傅里叶变换,得到原始图像的傅里叶变换估计:
F ^ ( u , v ) = G ( u , v ) H ( u , v ) \hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} F^(u,v)=H(u,v)G(u,v)

但是,由于实际上退化图像是退化算子与加性噪声项共同作用的结果,由此得到:
F ^ ( u , v ) = F ( u , v ) + N ( u , v ) H ( u , v ) \hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)} F^(u,v)=F(u,v)+H(u,v)N(u,v)

这表明即使获得退化函数 H ( u , v ) H(u,v) H(u,v) 的估计,由于噪声项是未知的,因此也不能准确地复原原始图像。

进一步地,如果退化函数为 0 或很小,则噪声项的影响将非常严重(信噪比低)。这时,需要将频率限制到原点附近进行分析,可以减少遇到零值的可能性。


例程 9.20:湍流模糊退化图像的逆滤波

如前所述,通过湍流退化模型可以得到退化图像。使用该退化模型进行逆滤波,退化函数与生成退化图像所用的退化函数相反:
H ( u , v ) = e − k [ ( u − M / 2 ) 2 + ( v − N / 2 ) 2 ] 5 / 6 H(u,v) = e^{-k [(u-M/2)^2+(v-N/2)^2]^{5/6}} H(u,v)=ek[(uM/2)2+(vN/2)2]5/6

但是,直接使用退化模型 H(u,v) 逆滤波的结果(D0=full)很差,用理想低通滤波器对退化模型 H(u,v) 在半径 D0 之外截止后,则视觉效果较好。

    # 9.20: 湍流模糊退化图像的逆滤波
    def turbulenceBlur(img, k=0.001):  # 湍流模糊传递函数: H(u,v) = exp(-k(u^2+v^2)^5/6)
        M, N = img.shape[1], img.shape[0]
        u, v = np.meshgrid(np.arange(M), np.arange(N))
        radius = (u - M//2)**2 + (v - N//2)**2
        kernel = np.exp(-k * np.power(radius, 5/6))
        return kernel

    def getDegradedImg(image, Huv, eps):  # 根据退化模型生成退化图像
        # (1) 傅里叶变换, 中心化
        fft = np.fft.fft2(image.astype(np.float32))  # 傅里叶变换
        fftShift = np.fft.fftshift(fft)  # 将低频分量移动到频域图像中心
        # (2) 在频率域修改傅里叶变换: 傅里叶变换 点乘 滤波器传递函数
        fftShiftFilter = fftShift * Huv  # Guv = Fuv * Huv
        # (3) 对修正傅里叶变换 进行傅里叶逆变换,逆中心化
        invShift = np.fft.ifftshift(fftShiftFilter)  # 将低频分量逆转换回图像四角
        imgIfft = np.fft.ifft2(invShift)  # 逆傅里叶变换,返回值是复数数组
        imgDegraded = np.uint8(cv2.normalize(np.abs(imgIfft), None, 0, 255, cv2.NORM_MINMAX))  # 归一化为 [0,255]
        return imgDegraded

    def ideaLPFilter(img, radius=10):  # 理想低通滤波器
        M, N = img.shape[1], img.shape[0]
        u, v = np.meshgrid(np.arange(M), np.arange(N))
        D = np.sqrt((u - M//2)**2 + (v - N//2)**2)
        kernel = np.zeros(img.shape[:2], np.float32)
        kernel[D <= radius] = 1
        return kernel

    def inverseFilter(image, Huv, D0):  # 根据退化模型逆滤波
        # (1) 傅里叶变换, 中心化
        fft = np.fft.fft2(image.astype(np.float32))  # 傅里叶变换
        fftShift = np.fft.fftshift(fft)  # 将低频分量移动到频域图像中心
        # (2) 在频率域修改傅里叶变换: 傅里叶变换 点乘 滤波器传递函数
        if D0==0:
            fftShiftFilter = fftShift / Huv  # Guv = Fuv / Huv
        else:
            lpFilter = ideaLPFilter(image, radius=D0)
            fftShiftFilter = fftShift / Huv * lpFilter  # Guv = Fuv / Huv
        # (3) 对修正傅里叶变换 进行傅里叶逆变换,逆中心化
        invShift = np.fft.ifftshift(fftShiftFilter)  # 将低频分量逆转换回图像四角
        imgIfft = np.fft.ifft2(invShift)  # 逆傅里叶变换,返回值是复数数组
        imgRebuild = np.uint8(cv2.normalize(np.abs(imgIfft), None, 0, 255, cv2.NORM_MINMAX))  # 归一化为 [0,255]
        return imgRebuild


    # 读取原始图像
    img = cv2.imread("../images/Fig0525a.tif", 0)  # flags=0 读取为灰度图像

    # 生成湍流模糊图像
    HTurb = turbulenceBlur(img, k=0.0025)
    imgBlur = np.abs(getDegradedImg(img, HTurb, 0.0))
    print(imgBlur.max(), imgBlur.min())

    # # 逆滤波
    imgRebuild = inverseFilter(imgBlur, HTurb, 480)  # Huv 全滤波器
    imgRebuild1 = inverseFilter(imgBlur, HTurb, D0=40)  # 在半径 D0 之外 Huv 截止
    imgRebuild2 = inverseFilter(imgBlur, HTurb, D0=70)
    imgRebuild3 = inverseFilter(imgBlur, HTurb, D0=100)

    plt.figure(figsize=(9, 7))
    plt.subplot(231), plt.title("origin"), plt.axis('off'), plt.imshow(img, 'gray')
    plt.subplot(232), plt.title("turbulence blur"), plt.axis('off'), plt.imshow(imgBlur, 'gray')
    plt.subplot(233), plt.title("inverse filter(D0=full)"), plt.axis('off'), plt.imshow(imgRebuild, 'gray')
    plt.subplot(234), plt.title("inverse filter(D0=40)"), plt.axis('off'), plt.imshow(imgRebuild1, 'gray')
    plt.subplot(235), plt.title("inverse filter(D0=70)"), plt.axis('off'), plt.imshow(imgRebuild2, 'gray')
    plt.subplot(236), plt.title("inverse filter(D0=100)"), plt.axis('off'), plt.imshow(imgRebuild3, 'gray')
    plt.tight_layout()
    plt.show()

【youcans 的 OpenCV 例程 200 篇】106. 退化图像的逆滤波_第1张图片


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/123027356)

Copyright 2022 youcans, XUPT
Crated:2022-2-20


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【youcans 的 OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【youcans 的 OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【youcans 的 OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【youcans 的 OpenCV 例程200篇】05. 图像的属性(np.shape)
【youcans 的 OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【youcans 的 OpenCV 例程200篇】07. 图像的创建(np.zeros)
【youcans 的 OpenCV 例程200篇】08. 图像的复制(np.copy)
【youcans 的 OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【youcans 的 OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【youcans 的 OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【youcans 的 OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【youcans 的 OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【youcans 的 OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【youcans 的 OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【youcans 的 OpenCV 例程200篇】16. 不同尺寸的图像加法
【youcans 的 OpenCV 例程200篇】17. 两张图像的渐变切换
【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法
【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩
【youcans 的 OpenCV 例程200篇】20. 图像的按位运算
【youcans 的 OpenCV 例程200篇】21. 图像的叠加
【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字
【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字
【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换
【youcans 的 OpenCV 例程200篇】25. 图像的平移
【youcans 的 OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【youcans 的 OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【youcans 的 OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【youcans 的 OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【youcans 的 OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【youcans 的 OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【youcans 的 OpenCV 例程200篇】32. 图像的扭变(错切)
【youcans 的 OpenCV 例程200篇】33. 图像的复合变换
【youcans 的 OpenCV 例程200篇】34. 图像的投影变换
【youcans 的 OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【youcans 的 OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【youcans 的 OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【youcans 的 OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【youcans 的 OpenCV 例程200篇】39. 图像灰度的线性变换
【youcans 的 OpenCV 例程200篇】40. 图像分段线性灰度变换
【youcans 的 OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【youcans 的 OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【youcans 的 OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【youcans 的 OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【youcans 的 OpenCV 例程200篇】45. 图像的灰度直方图
【youcans 的 OpenCV 例程200篇】46. 直方图均衡化
【youcans 的 OpenCV 例程200篇】47. 图像增强—直方图匹配
【youcans 的 OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【youcans 的 OpenCV 例程200篇】49. 图像增强—局部直方图处理
【youcans 的 OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【youcans 的 OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【youcans 的 OpenCV 例程200篇】52. 图像的相关与卷积运算
【youcans 的 OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】55. 可分离卷积核
【youcans 的 OpenCV 例程200篇】56. 低通盒式滤波器
【youcans 的 OpenCV 例程200篇】57. 低通高斯滤波器
【youcans 的 OpenCV 例程200篇】58. 非线性滤波—中值滤波
【youcans 的 OpenCV 例程200篇】59. 非线性滤波—双边滤波
【youcans 的 OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【youcans 的 OpenCV 例程200篇】61. 导向滤波(Guided filter)
【youcans 的 OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【youcans 的 OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【youcans 的 OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【youcans 的 OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【youcans 的 OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【youcans 的 OpenCV 例程200篇】67. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】68. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【youcans 的 OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【youcans 的 OpenCV 例程200篇】71. 连续函数的取样
【youcans 的 OpenCV 例程200篇】72. 一维离散傅里叶变换
【youcans 的 OpenCV 例程200篇】73. 二维连续傅里叶变换
【youcans 的 OpenCV 例程200篇】74. 图像的抗混叠
【youcans 的 OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【youcans 的 OpenCV 例程200篇】78. 频率域图像滤波基础
【youcans 的 OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【youcans 的 OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【youcans 的 OpenCV 例程200篇】81. 频率域高斯低通滤波器
【youcans 的 OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【youcans 的 OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【youcans 的 OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【youcans 的 OpenCV 例程200篇】85. 频率域高通滤波器的应用
【youcans 的 OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【youcans 的 OpenCV 例程200篇】87. 频率域钝化掩蔽
【youcans 的 OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【youcans 的 OpenCV 例程200篇】89. 带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】90. 频率域陷波滤波器
【youcans 的 OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【youcans 的 OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【youcans 的 OpenCV 例程200篇】93. 噪声模型的直方图
【youcans 的 OpenCV 例程200篇】94. 算术平均滤波器
【youcans 的 OpenCV 例程200篇】95. 几何均值滤波器
【youcans 的 OpenCV 例程200篇】96. 谐波平均滤波器
【youcans 的 OpenCV 例程200篇】97. 反谐波平均滤波器
【youcans 的 OpenCV 例程200篇】98. 统计排序滤波器
【youcans 的 OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【youcans 的 OpenCV 例程200篇】100. 自适应局部降噪滤波器
【youcans 的 OpenCV 例程200篇】101. 自适应中值滤波器
【youcans 的 OpenCV 例程200篇】102. 陷波带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】103. 陷波带阻滤波器消除周期噪声干扰
【youcans 的 OpenCV 例程200篇】104. 运动模糊退化模型
【youcans 的 OpenCV 例程200篇】105. 湍流模糊退化模型
【youcans 的 OpenCV 例程200篇】106. 退化图像的逆滤波

你可能感兴趣的:(youcans,的,OpenCV,例程,200,篇,opencv,python,图像处理,计算机视觉,算法)