OneFlow学习笔记:从OpExprInterpreter到OpKernel

撰文|月踏

更新|赵露阳

前文《OneFlow学习笔记:从Functor到OpExprInterpreter》讲了OpExprInterpreter的相关细节,再往下就是OneFlow中的虚拟机,它负责在eager模式下把指令(即op,在vm中称为指令)调度到具体的OpKernel上来执行。

1

Global简介

先看一个特殊的类Global,定义在
oneflow/core/common/global.h,这个类很简单,但是对于整个系统来说很重要,主要的几个接口如下:

template
class Global final {
 public:
  // 获取创建过的对象
  static T* Get() { ... }
  // 创建对象
  static void SetAllocated(T* val) { ... }
  template
  static T* New(Args&&... args) { ... }
  // 释放对象
  static void Delete() { ... }
  ...
};

这是一个可以根据指定顺序来创建全局单例对象的类,主要用在系统的初始化中,这样对于一些全局的对象在初始化的时候创建好,后续整个系统的各个模块就都可以使用了。

2

系统初始化过程

再继续看系统的初始化流程,首先在
python/oneflow/__init__.py+217中可以找到下面这句话:

__oneflow_global_unique_env = env_util.GetEnv()

GetEnv()方法在python/oneflow/framework/env_util.py中定义,其返回一个EnvHolder的Python对象,此对象初始化时,通过self._env_cxt = create_env()创建了OneFlow运行时所需要的环境上下文:

class EnvHolder(object):
    def __init__(self):
        if not HasAllMultiClientEnvVars():
            SetDefaultMultiClientEnvVars()
        self._env_cxt = create_env()
    ...


def create_env():
    """create environment


    Returns:
        Env: [description]
    """
    global default_env_proto
    assert len(default_env_proto.machine) > 0
    CompleteEnvProto(default_env_proto)
    if default_env_proto.ctrl_bootstrap_conf.world_size > 1:
        check_non_localhost_proxy_and_print_warning()
    return c_api_util.GetEnvContext(default_env_proto)

create_env()中,首先会通过CompleteEnvProto创建默认的env_proto对象,然后根据此env proto对象创建oneflow所需要的环境上下文env_ctx。

这里面和初始化相关的主线是GetEnvContext,其定位位于python/oneflow/framework/c_api_util.py+45:

def GetEnvContext(env_proto):
    assert type(env_proto) is env_pb2.EnvProto
    env_proto_str = text_format.MessageToString(env_proto)
    env_ctx = oneflow._oneflow_internal.EnvContext(env_proto_str)
    return env_ctx

这个EnvContext是oneflow内部导出的c api,其定义位于:
oneflow/api/python/env/env.cpp:L46。

其作用即初始化一个单例——env作用域对象EnvGlobalObjectsScope,并在其构造之初,通过
oneflow/core/job/env_global_objects_scope.cpp:L153的EnvGlobalObjectsScope::Init()方法初始化一些系统需要的其他全局单例对象/配置:

Maybe EnvGlobalObjectsScope::Init(const EnvProto& env_proto) {
  ...
  Global::New(env_proto);
  Global::New();
  ...
#ifdef WITH_CUDA
  Global::New();
  Global::New();
  Global::New();
#endif
 Global::New(Global::Get()->resource());
  Global::New();
  ... 
  return Maybe::Ok();
}

上面删去了很多代码,只展示了部分对象的创建,如:Global::New。

它会创建一个VirtualMachineScope的单例对象,这个类的构造函数因此会被执行一次,如下所示:

VirtualMachineScope::VirtualMachineScope(const Resource& resource) {
  Global::New(resource, GlobalProcessCtx::Rank());
}

在这个构造函数里,又通过Global创建了一个VirtualMachine的单例对象,这是个很重要的单例对象,后面讲虚拟机时会用到它,所以先在这一节引出。

3

StreamType和InstructionType的注册

还需要再看一部分和后面虚拟机非常相关的内容作为准备,它们是StreamType和InstructionType的注册,先看下面这段代码,位于oneflow/core/eager/cpu_opkernel_instruction_type.cpp+34:

COMMAND(vm::RegisterInstructionType("cpu.LocalCallOpKernel"));

COMMAND是一个宏,位于
oneflow/core/common/util.h+115,它的实现很巧妙,利用了匿名空间来保证在源文件定义的变量只在源文件可见,用CommandT和__LINE__在源文件中定义了一个唯一名字的struct,把注册语句放在它的构造函数中,然后再定义一个该struct的对象,其构造函数被自动执行的时候,注册语句也被执行:

#define COMMAND(...)                                                \
  namespace {                                                       \
  struct OF_PP_CAT(CommandT, __LINE__) {                            \
    OF_PP_CAT(CommandT, __LINE__)() { __VA_ARGS__; }                \
  };                                                                \
  OF_PP_CAT(CommandT, __LINE__) OF_PP_CAT(g_command_var, __LINE__); \
  }

再看实际的注册语句,它的模板参数是CpuLocalCallOpKernelInstructionType,定义在oneflow/core/eager/cpu_opkernel_instruction_type.cpp+27,如下所示:

class CpuLocalCallOpKernelInstructionType final : public LocalCallOpKernelInstructionType {
 public:
  CpuLocalCallOpKernelInstructionType() = default;
  ~CpuLocalCallOpKernelInstructionType() override = default;


  using stream_type = vm::CpuStreamType;
};

这段代码中的stream_type在下面会很有用,这段代码其实是把
CpuLocalCallOpKernelInstructionType类和vm::CpuStreamType类建立了关联,再继续看COMMAND宏中的注册语句,单独摘出来如下所示:

vm::RegisterInstructionType("cpu.LocalCallOpKernel")

RegisterInstructionType是一个模板函数,定义位于oneflow/core/vm/instruction_type.h+80:

template
void RegisterInstructionType(const std::string& instr_type_name) {
  RegisterInstrTypeId(instr_type_name, StaticGlobalStreamType());
}

以这里COMMAND的示例中对
CpuLocalCallOpKernelInstructionType的注册为例,按行来看,注册函数RegisterInstructionType主要内容在:oneflow/core/vm/instruction_type.cpp+54:

void RegisterInstrTypeId(const std::string& instruction_name, const StreamType* stream_type,
                         const InstructionType* instruction_type) {
  InstrTypeId instr_type_id;
  instr_type_id.__Init__(stream_type, instruction_type);
  CHECK(InstrTypeId4InstructionName()->emplace(instruction_name, instr_type_id).second);
}

实际做了下面几件事(CpuLocalCallOpKernelInstructionType的名字较长,为了方便表示,下面简称它为T):

  • 初始化一个InstrTypeId对象,并调用其__Init__方法为其成员变量stream_type_和instruction_type_赋值,这里stream_type就是T::stream_type,即vm::CpuStreamType;instruction_type即指向T的指令类型的指针对象。
  • 通过InstrTypeId4InstructionName()方法拿到一个静态HashMap map对象的指针。
  • 将instruction_name("cpu.LocalCallOpKernel")作为key,InstrTypeId对象instr_type_id作为value插入这个map中。

4

虚拟机调度过程1

前文《OneFlow学习笔记:从Functor到OpExprInterpreter》讲到了调用PhysicalRun之前的mirror mode和eager mode的大概流程,已经准备好了输入输出的EagerBlobObject以及一些context信息和相关的device信息,在调用PhysicalRun这个函数之后,就进入了虚拟机的部分。

4.1 放指令线程

PhysicalRun接受一个call-back function作为参数,这个call-back函数中会调用builder->LocalCallOpKernel这个函数,并且以前面准备好的输入、输出、ctx、device作为参数来执行,先来看PhysicalRun函数,它定义在
oneflow/core/framework/instructions_builder.cpp+595:

Maybe PhysicalRun(const std::function(InstructionsBuilder*)>& Build) {
  vm::InstructionMsgList instruction_list;
  InstructionsBuilder instructions_builder(std::make_shared(),
                                           &instruction_list);
  JUST(Build(&instructions_builder));
  JUST(vm::Run(instructions_builder.mut_instruction_list()));
  return Maybe::Ok();
}

这里的Build就是刚从传进来的call-back函数,整理出来再来加深一下印象:

[&](InstructionsBuilder* builder) -> Maybe {
    return builder->LocalCallOpKernel(kernel, input_eager_blob_objects, output_eager_blob_objects, ctx, op_device);
}

在PhysicalRun中,以InstructionsBuilder对象为参数来调用这个call-back function,所以会执行InstructionsBuilder中的LocalCallOpKernel函数,这个函数位于
oneflow/core/framework/instructions_builder.cpp+347:

Maybe InstructionsBuilder::LocalCallOpKernel(...) {
  ...
  auto phy_instr_operand = JUST(vm::LocalCallOpKernelPhyInstrOperand::New(
      opkernel, input_eager_blob_objects, output_eager_blob_objects, consistent_tensor_infer_result,
      ctx, *one::CurrentDevVmDepObjectConsumeMode()));
  auto instruction = intrusive::make_shared(
      Global::Get()->mut_vm(), JUST(op_device->local_call_instruction_name()),
      parallel_desc_sym, phy_instr_operand);
  instruction_list_->EmplaceBack(std::move(instruction));
  ...
  return Maybe::Ok();
}

这个函数逻辑大概是把输入op相关的信息打包成一个vm::InstructionMsg对象,然后放到instruction_list_这个list中。

到这里前面的PhysicalRun中的Build部分就分析完了,继续看Build之后的逻辑vm::Run,它主要是调了
oneflow/core/vm/vm_util.cpp+34中的Run方法:

Maybe Run(vm::InstructionMsgList* instr_msg_list) {
  auto* virtual_machine = JUST(GlobalMaybe());
  JUST(virtual_machine->Receive(instr_msg_list));
  return Maybe::Ok();
}

这里通过GlobalMaybe来得到了在前面第一节OneFlow初始化中讲到的被创建好的VirtualMachine对象,这里调用了VirtualMachine中的Receive函数,位于
oneflow/core/vm/virtual_machine.cpp+204:

Maybe VirtualMachineEngine::Receive(
    intrusive::shared_ptr&& compute_instr_msg) {
  InstructionMsgList instr_msg_list;
  instr_msg_list.EmplaceBack(std::move(compute_instr_msg));
  return Receive(&instr_msg_list);
}

这里的vm_变量类型是intrusive::shared_ptr,在我们的示例中,会走到else分支,也就调用了VirtualMachineEngine的Receive函数,它位于oneflow/core/vm/virtual_machine_engine.cpp+422,VirtualMachineEngine是一个很大很复杂的类,这里我们不关注它的其它功能,只关注当前的流程,下面是Receive函数的代码:

Maybe VirtualMachineEngine::Receive(InstructionMsgList* compute_instr_msg_list) {
  OF_PROFILER_RANGE_PUSH("vm:Receive");
  INTRUSIVE_UNSAFE_FOR_EACH_PTR(compute_instr_msg, compute_instr_msg_list) {
    OF_PROFILER_RANGE_PUSH(compute_instr_msg->DebugName());
    OF_PROFILER_RANGE_POP();
  }
  bool old_list_empty = mut_pending_msg_list()->MoveFrom(compute_instr_msg_list);
  OF_PROFILER_RANGE_POP();
  return old_list_empty;
}


Maybe VirtualMachineEngine::Receive(
    intrusive::shared_ptr&& compute_instr_msg) {
  InstructionMsgList instr_msg_list;
  instr_msg_list.EmplaceBack(std::move(compute_instr_msg));
  return Receive(&instr_msg_list);
}

从这里看到并没有指令被执行,唯一的一条线索是传进来的compute_instr_msg_list最终被放入了mut_pending_msg_list()中,当前的线程只负责往队列里放指令,另外有线程会从队列里往外取指令来执行,所以继续搜下mut_pending_msg_list()会在哪里被用到,可以搜到在
oneflow/core/vm/virtual_machine_engine.cpp+514的Schedule函数中被调用,Schedule又在oneflow/core/vm/virtual_machine.cpp+291中的ScheduleLoop函数中被调用,这就引入了使用指令的线程。

4.2 用指令线程

直接看ScheduleLoop线程函数被启动的地方,它在VirtualMachine的构造函数中作为一个线程函数被创建和启动,VirtualMachine的构造函数位于
oneflow/core/vm/virtual_machine.cpp+114,如下所示:

VirtualMachine::VirtualMachine(const Resource& resource, int64_t this_machine_id)
    : vm_threads_closed_(false) {
  ...
  std::function SchedulerInitializer;
  GetSchedulerThreadInitializer(&SchedulerInitializer);
  schedule_thread_ = std::thread(&VirtualMachine::ScheduleLoop, this, SchedulerInitializer);
}

从前面第一节讲的的OneFlow初始化流程中可知,在OneFlow初始化的时候创建一个VirtualMachine的全局对象,自然其构造函数会被调用,所以这个VirtualMachine::ScheduleLoop线程函数在那时就被启动了,继续看ScheduleLoop的内容,位于oneflow/core/vm/virtual_machine.cpp+291:

void VirtualMachine::ScheduleLoop(const std::function& Initializer) {
  ...
  while (pending_notifier_.WaitAndClearNotifiedCnt() == kNotifierStatusSuccess) {
    ...
    do {
      ...
      do {
        ...
        do { vm->Schedule(schedule_ctx); } while (!vm->ThreadUnsafeEmpty());
        vm->MoveToGarbageMsgListAndNotifyGC(schedule_ctx);
      } while (++i < kNumSchedulingPerTimoutTest);
    } while (MicrosecondsFrom(start) < kWorkingMicroseconds);
  }
  ...
}

这里面最重要的是Schedule函数的调用,位于
oneflow/core/vm/virtual_machine_engine.cpp+514,简化代码如下:

void VirtualMachineEngine::Schedule() {
  if (...) { ReleaseFinishedInstructions(); }
  if (...) { TryRunBarrierInstruction(); }
  if (...) { HandleLocalPending(); }
  if (...) { DispatchAndPrescheduleInstructions(); }
}

这个函数里比较重要的两个函数是HandleLocalPending和DispatchAndPrescheduleInstructions,先看HandleLocalPending,位于oneflow/core/vm/virtual_machine_engine.cpp+62,它的精简代码如下:

void VirtualMachineEngine::HandlePending() {
  ...
  InstructionMsgList pending_instr_msgs;
  INTRUSIVE_FOR_EACH_PTR(instr_msg, &pending_instr_msgs) {
    MakeInstructions(instr_msg, /*out*/ &new_instruction_list);
  }
  ...
  INTRUSIVE_FOR_EACH_PTR(instruction, &new_instruction_list) {
    ConsumeMirroredObjects(instruction);
    if (likely(Dispatchable(instruction))) {
      mut_ready_instruction_list()->PushBack(instruction);
      new_instruction_list.Erase(instruction);
    }
  }
}

可见它的工作主要是通过MakeInstructions制作指令,然后把指令放入list,再看DispatchAndPrescheduleInstructions,它位于oneflow/core/vm/virtual_machine_engine.cpp+320:

void VirtualMachineEngine::DispatchAndPrescheduleInstructions() {
  ReadyInstructionList tmp_ready_instruction_list;
  mut_ready_instruction_list()->MoveTo(&tmp_ready_instruction_list);
  INTRUSIVE_FOR_EACH(instruction, &tmp_ready_instruction_list) {
    ...
    DispatchInstruction(instruction.Mutable());
    ...
  }
  ...
}

这个函数的主要工作是调用了DispatchInstruction,继续来看一下这个函数,位于
oneflow/core/vm/virtual_machine_engine.cpp+344:

void VirtualMachineEngine::DispatchInstruction(Instruction* instruction,
                                               const ScheduleCtx& schedule_ctx) {
  auto* stream = instruction->mut_stream();
  stream->mut_running_instruction_list()->PushBack(instruction);
  if (stream->active_stream_hook().empty()) { mut_active_stream_list()->PushBack(stream); }
  const auto& stream_type = stream->stream_type();
  if (OnSchedulerThread(stream_type)) {
    stream_type.Run(instruction);
  } else {
    stream->mut_thread_ctx()->mut_pending_instruction_list()->PushBack(instruction);
    schedule_ctx.OnWorkerLoadPending(stream->mut_thread_ctx());
  }
}

从这个函数中可以看出,指令被stream_type.Run来执行了,这里打断一下,用下面一节内容来追一下这里的stream_type从哪来的。

5

指令中的stream

从上面第四节的最后一段代码中,可以看到stream_type来自于stream,stream来自于Instruction,本节来追一下Instruction中的stream是怎么来的。

以mirror mode为例,代码会首先进入4.1节讲过的LocalCallOpKernel函数执行,位于
oneflow/core/framework/instructions_builder.cpp+347:

Maybe InstructionsBuilder::LocalCallOpKernel(..., Symbol op_device) {
  ...
  const auto& instruction_name = JUST(StreamRoleSwitch(
      stream->stream_role(), stream->device()->enum_type()));
  auto instruction = intrusive::make_shared(
      Global::Get()->mut_vm(), instruction_name, parallel_desc_sym,
      phy_instr_operand);
  instruction_list_->EmplaceBack(std::move(instruction));
  ...
  return Maybe::Ok();
}

这里主要是在创建指令instruction对象,创建完成后放入指令列表末尾。

这里先看一下instruction_name是怎么产生的,在GetCallInstructionName的结构体中维护着stream_role、stream type以及对应的指令名称instruction_name之间的映射关系,在StreamRoleSwitch模板中会转发至其Case方法,并最终返回instruction_name的字符串。

所以在我们的示例中会返回"cpu.LocalCallOpKernel",在第三节中的注册示例中,可以看到以这个字符串为key,注册了CpuLocalCallOpKernelInstructionType这个类,它关联了vm::CpuStreamType类型,这些信息在后面都会用到。

再看InstructionMsg,它的定义位于
oneflow/core/vm/instruction.h+39:

class InstructionMsg final : public intrusive::Base {
  ...
  InstrTypeId instr_type_id_;
  std::string instr_type_name_;
  ...
  Stream* phy_instr_stream_;
};

InstructionMsg持有的InstrTypeId、Stream指针这两个成员和我们要追的stream的线索最相关,我们只需要关注这两个成员就好,在前面调用intrusive::make_shared(...)的时候,根据intrusive::make_shared的实现,会调用到InstructionMsg的下面这个__Init__函数,位于
oneflow/core/vm/instruction.cpp+42:

void InstructionMsg::__Init__(VirtualMachineEngine* vm, const std::string& instr_type_name,
                              const std::shared_ptr& phy_instr_parallel_desc,
                              const std::shared_ptr& phy_instr_operand) {
  __Init__();
  if (likely(phy_instr_parallel_desc)) {
    int device_id = phy_instr_parallel_desc->parallel_id2device_id().at(0);
    vm->GetCachedInstrTypeIdAndPhyInstrStream(instr_type_name, device_id, mut_instr_type_id(),
                                              &phy_instr_stream_);
  }
  ...
}

instr_type_id_和phy_instr_stream_的赋值就是在上面代码中的
GetCachedInstrTypeIdAndPhyInstrStream函数调用中完成的,定义位于oneflow/core/vm/virtual_machine_engine.cpp+383:

void VirtualMachineEngine::GetCachedInstrTypeIdAndPhyInstrStream(const std::string& instr_type_name,
                                                                 int device_id,
                                                                 InstrTypeId* instr_type_id,
                                                                 Stream** stream) {
  auto* cache = &instr_type_name2rt_instr_type_id_;
  auto iter = cache->find(instr_type_name);
  if (unlikely(iter == cache->end())) {
    const auto& instr_type_id_val = LookupInstrTypeId(instr_type_name);
    const auto* stream_type = &instr_type_id_val.stream_type();
    auto* stream_rt_desc = this->mut_stream_type2stream_rt_desc()->FindPtr(stream_type);
    iter = cache->emplace(instr_type_name, RtInstrTypeId(instr_type_id_val, stream_rt_desc)).first;
  }
  instr_type_id->CopyFrom(iter->second.instr_type_id());
  *stream = iter->second.GetStream(device_id);
}

这一段代码其实涉及的内容非常多,这里只能简单说一下,函数传进来的instr_type_name是"cpu.LocalCallOpKernel",先在VirtualMachineEngine的下面这个map成员查询这个key:

std::map instr_type_name2rt_instr_type_id_;

这个map的value type是RtInstrTypeId,从它可以得到InstrTypeId和相应的Stream指针,它定义位于
oneflow/core/vm/runtime_instr_type_id.h+25:

class RtInstrTypeId final {
 public:
  RtInstrTypeId(const RtInstrTypeId&) = default;
  RtInstrTypeId(RtInstrTypeId&&) = default;
  ~RtInstrTypeId() = default;


  RtInstrTypeId(const InstrTypeId& instr_type_id, StreamRtDesc* stream_rt_desc)
      : instr_type_id_(instr_type_id), stream_rt_desc_(stream_rt_desc) {
    if (stream_rt_desc->stream_type().IsControlStreamType()) {
      get_stream_ = &StreamRtDesc::GetSoleStream;
    } else {
      get_stream_ = &StreamRtDesc::GetDeviceStream;
    }
  }


  const InstrTypeId& instr_type_id() const { return instr_type_id_; }
  Stream* GetStream(int device_id) const { return (stream_rt_desc_->*get_stream_)(device_id); }


 private:
  const InstrTypeId instr_type_id_;
  StreamRtDesc* stream_rt_desc_;
  Stream* (StreamRtDesc::*get_stream_)(int device_id) const;
};

如果没有从这个map中找到"cpu.LocalCallOpKernel"这个key,则会做下面操作:

if (unlikely(iter == cache->end())) {
  const auto& instr_type_id_val = LookupInstrTypeId(instr_type_name);
  const auto* stream_type = &instr_type_id_val.stream_type();
  auto* stream_rt_desc = this->mut_stream_type2stream_rt_desc()->FindPtr(stream_type);
  iter = cache->emplace(instr_type_name, RtInstrTypeId(instr_type_id_val, stream_rt_desc)).first;
}

先通过LookupInstrTypeId查询第三节注册的数据结构C,从而找到"cpu.LocalCallOpKernel"相应的InstrTypeId,它里面包含相关的StreamTypeId信息,再使用这个StreamTypeId,通过调用
mut_stream_type_id2stream_rt_desc()->FindPtr来找到对应的StreamRtDesc对象指针,然后根据instr_type_id_val和stream_rt_desc构造一个RtInstrTypeId对象作为value,维护到前面的map中,最后再从这个map得到InstrTypeId和相应的Stream指针返回。

顺便说一下
mut_stream_type_id2stream_rt_desc()对应的数据结构,它在VirtualMachineEngine的__Init__函数中(构造的时候被调用)被初始化,位于oneflow/core/vm/virtual_machine_engine.cpp+358:

void VirtualMachineEngine::__Init__(const VmDesc& vm_desc) {
  ...
  INTRUSIVE_UNSAFE_FOR_EACH_PTR(stream_desc, &vm_desc.stream_type_id2desc()) {
    if (stream_desc->num_threads() == 0) { continue; }
    auto stream_rt_desc = intrusive::make_shared(stream_desc);
    mut_stream_type_id2stream_rt_desc()->Insert(stream_rt_desc.Mutable());
    ...
  }
}

这样就知道了构造好的InstructionMsg对象是怎么包含的Stream信息,继续看InstructionMsg是怎么转换为Instruction对象的,在前面4.2节中讲的HandleLocalPending函数,位于oneflow/core/vm/virtual_machine_engine.cpp+62:

void VirtualMachineEngine::HandlePending() {
  ...
  InstructionMsgList pending_instr_msgs;
  INTRUSIVE_FOR_EACH_PTR(instr_msg, &pending_instr_msgs) {
    MakeInstructions(instr_msg, /*out*/ &new_instruction_list);
  }
  ...
  INTRUSIVE_FOR_EACH_PTR(instruction, &new_instruction_list) {
    ConsumeMirroredObjects(instruction);
    if (likely(Dispatchable(instruction))) {
      mut_ready_instruction_list()->PushBack(instruction);
      new_instruction_list.Erase(instruction);
    }
  }
}

其中的MakeInstructions会做这个转换,它的定义位于
oneflow/core/vm/virtual_machine_engine.cpp+226,原来的Stream信息也会被维护到这个新的数据结构中:

void VirtualMachineEngine::MakeInstructions(InstructionMsg* instr_msg,
                                            /*out*/ InstructionList* new_instruction_list) {
  const auto& instruction_type = instr_msg->instr_type_id().instruction_type();
  bool is_barrier_instruction = instruction_type.IsFrontSequential();
  Stream* stream = CHECK_NOTNULL(instr_msg->phy_instr_stream());
  const auto& pd = instr_msg->phy_instr_parallel_desc();
  intrusive::shared_ptr instr = stream->NewInstruction(instr_msg, pd);
  LivelyInstructionListPushBack(instr.Mutable());
  if (unlikely(is_barrier_instruction)) {
    mut_barrier_instruction_list()->PushBack(instr.Mutable());
  } else {
    new_instruction_list->PushBack(instr.Mutable());
  }
}

以上就是第四节末尾代码调用stream_type.Run()的时候,stream_type的由来,由前面的分析可知,它的实际类型就是和
CpuLocalCallOpKernelInstructionType建立好关联的vm::CpuStreamType!下面继续看虚拟机的调度过程。

6

虚拟机调度过程2

再继续看第四节的最后一段代码,为方便阅读,重新贴一下主要内容,位于
oneflow/core/vm/virtual_machine_engine.cpp+344:

void VirtualMachineEngine::DispatchInstruction(Instruction* instruction) {
  ...
  if (OnSchedulerThread(stream_type)) {
    stream_type.Run(instruction);
  } else {
    stream->mut_thread_ctx()->mut_pending_instruction_list()->PushBack(instruction);
    schedule_ctx.OnWorkerLoadPending(stream->mut_thread_ctx());
  }
  ...
}

从这个函数中可以看出,指令被stream_type.Run来执行了,从前面第五节的分析可知,stream_type是vm::CpuStreamType类型,继承自StreamType类型,StreamType定义于
oneflow/core/vm/stream_type.h,下面是它的主要接口:

class StreamType {
 public:
  virtual ~StreamType() = default;
  void Run(Instruction* instruction) const { Compute(instruction); }


  virtual const char* stream_tag() const = 0;
  virtual void InitDeviceCtx(std::unique_ptr* device_ctx, Stream* stream) const = 0;
  virtual void InitInstructionStatus(const Stream& stream,
                                     InstructionStatusBuffer* status_buffer) const = 0;
  virtual void DeleteInstructionStatus(const Stream& stream,
                                       InstructionStatusBuffer* status_buffer) const = 0;
  virtual bool QueryInstructionStatusDone(const Stream& stream,
                                          const InstructionStatusBuffer& status_buffer) const = 0;
  virtual void Compute(Instruction* instruction) const = 0;
  virtual intrusive::shared_ptr MakeStreamDesc(const Resource& resource,
                                                           int64_t this_machine_id) const = 0;
  virtual bool OnSchedulerThread() const = 0;
  virtual bool SupportingTransportInstructions() const = 0;
  virtual bool IsControlStreamType() const { return false; }


 protected:
  StreamType() = default;
};

这里面含有前面代码中用到的Run接口(stream_type.Run),它的实现位于Compute函数中。从StreamType的定义可以知道,这是一个虚接口,StreamType有下面这些子类实现:

OneFlow学习笔记:从OpExprInterpreter到OpKernel_第1张图片
图1

我们这里使用的是CpuStreamType,定义位于oneflow/core/vm/cpu_stream_type.h,它的Compute函数位于oneflow/core/vm/cpu_stream_type.cpp+50,如下所示:

void CpuStreamType::Compute(Instruction* instruction) const {
  ...
  {
    const auto& instr_type_id = instruction->mut_instr_msg()->instr_type_id();
    instr_type_id.instruction_type().Compute(instruction);
  }
  auto* status_buffer = instruction->mut_status_buffer();
  NaiveInstrStatusQuerier::MutCast(status_buffer->mut_buffer()->mut_data())->set_done();
  ...
}

可以看到这里又调用了instr_type_id.instruction_type().Compute()这个函数,这个Compute属于instruction_type()对应的类中,可以查到instruction_type()会返回一个InstructionType类型的const引用对象,所以关注InstructionType类即可,它的定义位于oneflow/core/vm/instruction_type.h,里面有Compute虚接口:

class InstructionType {
  ...
  virtual void Compute(Instruction* instruction) const = 0;
  virtual void ComputeInFuseMode(InstructionMsg* instr_msg) const { LOG(FATAL) << "UNIMPLEMENTED"; }
  ...
};

这也是个继承体系,InstructionType有非常多的子类,下面是我找到的一部分示例,没有列完:

OneFlow学习笔记:从OpExprInterpreter到OpKernel_第2张图片
我们调用的Compute位于上图中的
LocalCallOpKernelInstructionType,位于oneflow/core/eager/opkernel_instruction_type.cpp+150,它的Compute函数定义如下:

void LocalCallOpKernelInstructionType::Compute(vm::Instruction* instruction) const {
  CHECK_JUST(LocalCallOpKernelUtil::Compute(instruction));
}

可见又继续调用了
LocalCallOpKernelUtil::Compute,继续追这个函数,它的定义位于oneflow/core/eager/opkernel_instruction_type.cpp+44:

struct LocalCallOpKernelUtil final {
  static inline Maybe Compute(vm::Instruction* instruction) {
    ...
    OpKernelCompute(operand, device_ctx, state, cache);
    ...
    return Maybe::Ok();
  }
  ...
};

这里又继续调用了OpKernelCompute,在同一个类中:

struct LocalCallOpKernelUtil final {
  ...
  static inline void OpKernelCompute(LocalCallOpKernelPhyInstrOperand* operand,
                                     DeviceCtx* device_ctx, user_op::OpKernelState* state,
                                     const user_op::OpKernelCache* cache) {
    ...
    operand->user_opkernel()->Compute(compute_ctx, state, cache);
    ...
  }
};

其中user_opkernel()会返回一个user_op::OpKernel的指针,而这个OpKernel就是我们定义算子的时候必须要继承的一个基类,以我们的relu示例来说,relu的计算部分定义在
oneflow/user/kernels/relu_kernel.cpp,精简代码如下:

class ReluKernel final : public user_op::OpKernel, public user_op::CudaGraphSupport {
 private:
  void Compute(user_op::KernelComputeContext* ctx) const override {
    // do computing!
  }
};

至此,终于从上到下打通了一条执行路线!

Reference

本文主要梳理了OneFlow虚拟机的的作用和相关实现,主要参考的是OneFlow的官方代码和之前的一些相关文章,但限于篇幅和本人目前的认知,里面有很多地方还没有弄懂或者没有总结,比如指令边的部分,SkipList、SkipListHead、ListHookArray、ListHook、SkipListHook等基础数据结构的作用及实现细节等,需要继续学习的地方还有很多,继续加油~

下面是相关链接:

*(本文参考代码:

https://github.com/Oneflow-In...)*

特别感谢同事路强、俊丞、后江在我学习和理解这部分内容的过程中提供的帮助。

欢迎下载体验OneFlow v0.7.0最新版本:

https://github.com/Oneflow-In...

你可能感兴趣的:(学习笔记code虚拟机数据结构)