CCF-CSP 202203-2 出行计划 差分算法满分题解+解题思路

CCF-CSP 202203-2 出行计划 差分算法满分题解+解题思路

题目链接:202203-2 出行计划

70分思路:

  • 按照题目要求,直接设置两个数组,记录进入场所的时刻t和单位时间c,即int t[N],c[N];
  • 由于需要知道核酸检测结果出来的时刻,则直接设置为l,即int l = q+k;
  • 双重循环进行判断,外循环为输入q,内循环遍历数组
  • 进入场所的时刻t必须满足:已出检测结果+检测结果未过期

70分具体代码如下:

#include 
#include 
using namespace std;
const int N = 1e5+10;//数据范围
int n,m,k;//输入
int t[N],c[N];//记录t时刻,c单位时间
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
    {
        cin>>t[i]>>c[i];
    }
    for(int i=1;i<=m;i++)
    {
        int sum = 0;//用于输出
        int q;
        cin>>q;
        int l = q+k;//定义时间的左边界,即检测结果出来的时刻
        for(int j=1;j<=n;j++)
        {
            if(l<=t[j]&&l+c[j]-1>=t[j])//进入场所的时刻t必须满足:已出检测结果+检测结果未过期
            {
                sum++;
            }
        }
        cout<<sum<<endl;
    }
    return 0;
}

100分思路:

  • 由70分代码可知,运行时间过长的原因在于双重循环
  • 仔细思考后发现:在外层循环中,qi按照时间顺序给出,则存在重复判断的情况,例如,无论q=1还是q=2,第一组数据5 24都不符合要求,但是在70分程序中该情况盘端了两次,导致重复
  • 我们接下来只需要将这部分重复判断的操作去除,将两层循环改成一层循环即可
  • 70分代码的思路我们是站在人(小C)的角度处理问题,即按照他的思路(即题目要求)一步一步处理问题,优先解决人的需求;接下来100分代码思路中,我们优先处理场所需求,即判断出进入该场所需要的最早时间核酸报告(left)和最晚时间核酸报告(right)
  • 后考虑人的需求,即人在left~right这个时间范围内进入场所都是符合要求的,可将问题转化为对区间的处理:核酸检测的时间t+等待核酸检测的时间k所在的点有多少个满足条件的场所
  • 此100分代码考虑差分算法,便于在left~right之间加上一个数,时间复杂度为O(n)
  • 注意数组的大小开成4e5+10,因为会考虑到t+q即最大为2e5+2e5

100分具体代码如下:

#include
#include
using namespace std;
const int N = 4e5+10;
int n,m,k;
int b[N];//差分数组
//令l~r之间的数都+c
void insert(int l,int r,int c)
{
    b[l]+=c;
    b[r+1]-=c;
}
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
    {
        int x,y;
        cin>>x>>y;
        int left = x-y+1;//定义左边界
        left = left>0?left:1;
        int right = x;//定义右边界
        insert(left,right,1);
    }
    //前缀和操作,得到各个点的数值
    for(int i=1;i<=N;i++)
    {
        b[i] = b[i-1]+b[i];
    }
    while(m--)
    {
        int x;
        cin>>x;
        cout<<b[x+k]<<endl;//直接得到x+k处的数值
    }
    return 0;
}

你可能感兴趣的:(CCF-CSP,ccf,c++)