TinyImageNet数据集的val验证集不能直接用datasets.ImageFolder导入,直接使用的话精度只有零点几。而且test数据集是没有标注的。
错误示例:
trainset = datasets.ImageFolder(root=os.path.join(data_dir, data, 'tiny-imagenet-200/train'), transform=transform_train)
testset = datasets.ImageFolder(root=os.path.join(data_dir, data, 'tiny-imagenet-200/test'), transform=transform_test)
使用了已存在的代码:
from torch.utils.data import Dataset, DataLoader
from torchvision import models, utils, datasets, transforms
import numpy as np
import sys
import os
from PIL import Image
class TinyImageNet_load(Dataset):
def __init__(self, root, train=True, transform=None):
self.Train = train
self.root_dir = root
self.transform = transform
self.train_dir = os.path.join(self.root_dir, "train")
self.val_dir = os.path.join(self.root_dir, "val")
if (self.Train):
self._create_class_idx_dict_train()
else:
self._create_class_idx_dict_val()
self._make_dataset(self.Train)
words_file = os.path.join(self.root_dir, "words.txt")
wnids_file = os.path.join(self.root_dir, "wnids.txt")
self.set_nids = set()
with open(wnids_file, 'r') as fo:
data = fo.readlines()
for entry in data:
self.set_nids.add(entry.strip("\n"))
self.class_to_label = {}
with open(words_file, 'r') as fo:
data = fo.readlines()
for entry in data:
words = entry.split("\t")
if words[0] in self.set_nids:
self.class_to_label[words[0]] = (words[1].strip("\n").split(","))[0]
def _create_class_idx_dict_train(self):
if sys.version_info >= (3, 5):
classes = [d.name for d in os.scandir(self.train_dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(self.train_dir) if os.path.isdir(os.path.join(self.train_dir, d))]
classes = sorted(classes)
num_images = 0
for root, dirs, files in os.walk(self.train_dir):
for f in files:
if f.endswith(".JPEG"):
num_images = num_images + 1
self.len_dataset = num_images;
self.tgt_idx_to_class = {i: classes[i] for i in range(len(classes))}
self.class_to_tgt_idx = {classes[i]: i for i in range(len(classes))}
def _create_class_idx_dict_val(self):
val_image_dir = os.path.join(self.val_dir, "images")
if sys.version_info >= (3, 5):
images = [d.name for d in os.scandir(val_image_dir) if d.is_file()]
else:
images = [d for d in os.listdir(val_image_dir) if os.path.isfile(os.path.join(self.train_dir, d))]
val_annotations_file = os.path.join(self.val_dir, "val_annotations.txt")
self.val_img_to_class = {}
set_of_classes = set()
with open(val_annotations_file, 'r') as fo:
entry = fo.readlines()
for data in entry:
words = data.split("\t")
self.val_img_to_class[words[0]] = words[1]
set_of_classes.add(words[1])
self.len_dataset = len(list(self.val_img_to_class.keys()))
classes = sorted(list(set_of_classes))
# self.idx_to_class = {i:self.val_img_to_class[images[i]] for i in range(len(images))}
self.class_to_tgt_idx = {classes[i]: i for i in range(len(classes))}
self.tgt_idx_to_class = {i: classes[i] for i in range(len(classes))}
def _make_dataset(self, Train=True):
self.images = []
if Train:
img_root_dir = self.train_dir
list_of_dirs = [target for target in self.class_to_tgt_idx.keys()]
else:
img_root_dir = self.val_dir
list_of_dirs = ["images"]
for tgt in list_of_dirs:
dirs = os.path.join(img_root_dir, tgt)
if not os.path.isdir(dirs):
continue
for root, _, files in sorted(os.walk(dirs)):
for fname in sorted(files):
if (fname.endswith(".JPEG")):
path = os.path.join(root, fname)
if Train:
item = (path, self.class_to_tgt_idx[tgt])
else:
item = (path, self.class_to_tgt_idx[self.val_img_to_class[fname]])
self.images.append(item)
def return_label(self, idx):
return [self.class_to_label[self.tgt_idx_to_class[i.item()]] for i in idx]
def __len__(self):
return self.len_dataset
def __getitem__(self, idx):
img_path, tgt = self.images[idx]
with open(img_path, 'rb') as f:
sample = Image.open(img_path)
sample = sample.convert('RGB')
if self.transform is not None:
sample = self.transform(sample)
return sample, tgt
调用示例:
trainset = datasets.ImageFolder(root=os.path.join(data_dir, data, 'tiny-imagenet-200/train'), transform=transform_train)
testset= TinyImageNet.TinyImageNet_load('./TINY/tiny-imagenet-200/', train=False, transform=transform_test)