用 Python 制作可视化报表,这也太快了

大家好,在数据展示中使用图表来分享自己的见解,是个非常常见的方法。这也是Tableau、Power BI这类商业智能仪表盘持续流行的原因之一,这些工具为数据提供了精美的图形解释。

当然了,这些工具也有着不少缺点,比如不够灵活,无法让你自己创建设计。 当你对图表展示要求定制化时,编程也许就比较适合你,比如Echarts、D3.js。

今天给大家介绍一个用Python制作可视化报表的案例,主要是使用到Dash+Tailwindcss。喜欢本文记得收藏、点赞、关注。

【注】完整代码、数据、技术交流文末提供

可视化报表效果如下
用 Python 制作可视化报表,这也太快了_第1张图片

Dash是基于Plotly搭建的Dashbord框架,支持Python、R和Julia。使用Dash,你可以创建自定义响应式仪表板。

用 Python 制作可视化报表,这也太快了_第2张图片

相关文档

说明:https://dash.plotly.com/introduction

案例:https://dash.gallery/Portal/

源码:https://github.com/plotly/dash-sample-apps/

Tailwindcss则是一个实用程序优先的CSS框架,用于快速构建自定义界面。

用 Python 制作可视化报表,这也太快了_第3张图片

“这种框架只适用于那种只会实现页面布局美化元素而不关心实现业务逻辑的前端”。

看看别人对它的评价,对于无交互的图表,完全足够了。

相关文档

说明:https://www.tailwindcss.cn/docs

GitHub:https://github.com/tailwindlabs/tailwindcss

下面就给大家讲解下如何通过Dash+Tailwindcss搭建可视化报表~

首先安装相关的Python库,然后导入。

import dash
import pandas as pd
import plotly.express as px
from dash import dcc, html

使用到了Pandas、Plotly、dash这三个Python库。

我们需要把Tailwindcss的CDN作为external_script,并将其传递给我们的应用程序实例,这样我们才可以成功使用Tailwindcss。

# 导入tailwindcss的CDN
external_script = ["https://tailwindcss.com/", {"src": "https://cdn.tailwindcss.com"}]

# 创建Dash实例
app = dash.Dash(
    __name__,
    external_scripts=external_script,
)
app.scripts.config.serve_locally = True

使用Pandas创建水果销售数据,随便虚构了一个。

# 创建数据
df = pd.DataFrame(
    {
        "Fruit": ["苹果", "橙子", "香蕉", "苹果", "橙子", "香蕉"],
        "Amount": [4.2, 1.0, 2.1, 2.32, 4.20, 5.0],
        "City": ["北京", "北京", "北京", "上海", "上海", "上海"],
    }
)

print(df)

结果如下,3列6行,包含水果、销售额、城市列。

用 Python 制作可视化报表,这也太快了_第4张图片

处理一下相关的数据,水果单数、销售总额、城市单数、变量数。

# 水果单数
fruit_count = df.Fruit.count()
# 销售总额
total_amt = df.Amount.sum()
# 城市单数
city_count = df.City.count()
# 变量数
variables = df.shape[1]

创建图表实例,一个柱状图、一个箱型图。

# 柱状图1, 不同水果不同城市的销售额
fig = px.bar(df, x="Fruit", y="Amount", color="City", barmode="group")

# 箱型图1, 不同城市的销售额分布情况
fig1 = px.box(df, x="City", y="Amount", color="City")

效果如下。

用 Python 制作可视化报表,这也太快了_第5张图片

剩下就是文字模块啦,文字+CSS样式。

其中排版布局美化,通过Tailwindcss来实现。

app.layout = html.Div(
    html.Div(
        children=[
            html.Div(
                children=[
                    html.H1(children="水果销售--可视化报表", className=" py-3 text-5xl font-bold text-gray-800"),
                    html.Div(
                        children="""Python with Dash =  .""",
                        className="text-left prose prose-lg text-2xl  py-3 text-gray-600",
                    ),
                ],
                className="w-full mx-14 px-16 shadow-lg bg-white -mt-14 px-6 container my-3 ",
            ),
            html.Div(
                html.Div(
                    children=[
                        html.Div(
                            children=[
                                f"¥{total_amt}",
                                html.Br(),
                                html.Span("总销售额", className="text-lg font-bold ml-4"),
                            ],
                            className=" shadow-xl py-4 px-14 text-5xl bg-[#76c893] text-white  font-bold text-gray-800",
                        ),
                        html.Div(
                            children=[
                                fruit_count,
                                html.Br(),
                                html.Span("水果数量", className="text-lg font-bold ml-4"),
                            ],
                            className=" shadow-xl py-4 px-24 text-5xl bg-[#1d3557] text-white  font-bold text-gray-800",
                        ),
                        html.Div(
                            children=[
                                variables,
                                html.Br(),
                                html.Span("变量", className="inline-flex items-center text-lg font-bold ml-4"),
                            ],
                            className=" shadow-xl py-4 px-24 text-5xl bg-[#646ffa] text-white  font-bold text-gray-800",
                        ),
                        html.Div(
                            children=[
                                city_count,
                                html.Br(),
                                html.Span("城市数量", className="text-lg font-bold ml-4"),
                            ],
                            className="w-full shadow-xl py-4 px-24 text-5xl bg-[#ef553b] text-white  font-bold text-gray-800",
                        ),
                    ],
                    className="my-4 w-full grid grid-flow-rows grid-cols-1 lg:grid-cols-4 gap-y-4 lg:gap-[60px]",
                ),
                className="flex max-w-full justify-between items-center ",
            ),
            html.Div(
                children=[
                    html.Div(
                        children=[
                            dcc.Graph(id="example-graph", figure=fig),
                        ],
                        className="shadow-xl w-full border-3 rounded-sm",
                    ),
                    html.Div(
                        children=[
                            dcc.Graph(id="example-graph1", figure=fig1),
                        ],
                        className="w-full shadow-2xl rounded-sm",
                    ),
                ],
                className="grid grid-cols-1 lg:grid-cols-2 gap-4",
            ),
        ],
        className="bg-[#ebeaee]  flex py-14 flex-col items-center justify-center ",
    ),
    className="bg-[#ebeaee] container mx-auto px-14 py-4",
)

效果如下。

用 Python 制作可视化报表,这也太快了_第6张图片

最后启动程序代码。

if __name__ == '__main__':
    # debug模式, 端口7777
    app.run_server(debug=True, threaded=True, port=7777)
    # 正常模式, 网页右下角的调试按钮将不会出现
    # app.run_server(port=7777)

这样就能在本地看到可视化大屏页面,浏览器打开如下地址。

http://127.0.0.1:7777

用 Python 制作可视化报表,这也太快了_第7张图片

以后制作的图表不仅能在线展示,还能实时更新,属实不错~

好了,今天的分享到此结束,大家可以自行去动手练习。

推荐文章

  • 李宏毅《机器学习》国语课程(2022)来了

  • 有人把吴恩达老师的机器学习和深度学习做成了中文版

  • 上瘾了,最近又给公司撸了一个可视化大屏(附源码)

  • 如此优雅,4款 Python 自动数据分析神器真香啊

  • 梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学

  • 香的很,整理了20份可视化大屏模板

技术交流

完整代码、技术交流、数据获取,可以找我来要
在这里插入图片描述

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

长按关注

你可能感兴趣的:(python,python,开发语言,数据可视化,可视化)