ValueError: Error when checking input: expected input_2 to have shape (1, 1, *) but got array with shape (1, 2, *)
设置三个输入入口,构建的模型整体示意图如下:
输入大小分别为:
model = Model(inputs=[input_x1,input_x2,input_x3], outputs=output)
再到最后训练程序,看似毫无问题(附上主要问题,无关的核心代码已删,请见谅)
history = model.fit([X_train1,X_train2,X_train3],
Y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=([X_test,X_test,X_test], Y_test),
])
点击运行,报错。
报错意思是说维度不匹配,但是如果注释掉validation_data这一行程序可以照常训练。
ValueError: Error when checking input: expected input_2 to have shape (1, 1, *) but got array with shape (1, 2, *)
网上查了下,还是有人跟我遇到类似的问题,作者说没找到多输入时model.fit中设置validation_data的例子,不过还是没有解决我的问题。
https://www.jianshu.com/p/00015b976016
分析一下,既然注释掉validation_data可以跑,那么问题就在validation_data这块,于是我检查了传入的值,果不其然。
修改前:
history = model.fit([X_train1,X_train2,X_train3],
Y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=([X_test,X_test,X_test], Y_test)
修改后(仅仅改动验证部分传入的参数值)
history = model.fit([X_train1,X_train2,X_train3],
Y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=([X_test1,X_test2,X_test3], Y_test)