两个重要极限的推导

两个重要极限

(1)

lim ⁡ θ → 0 sin ⁡ θ θ = 1   ( θ 为弧度) \underset{\theta \rightarrow 0}{\lim}\frac{\sin \theta}{\theta}=1\ \ \text{(}\theta \text{为弧度)} θ0limθsinθ=1  θ为弧度)

(2)

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \underset{x\rightarrow \infty}{\lim}\left( 1+\frac{1}{x} \right) ^x=e xlim(1+x1)x=e

推导

(1)

如图所示,在单位圆上
两个重要极限的推导_第1张图片
θ \theta θ变得很小时有
两个重要极限的推导_第2张图片
根据原理“short pieces of curves are nearly straight(极短的曲线几乎可以看做直线)”
所以当 θ \theta θ越来越小时,弯曲的那段会趋于一条直线,可以认为 θ ≈ sin ⁡ θ \theta \approx \sin\theta θsinθ
即当 θ → 0 \theta \to 0 θ0时,可以认为 sin ⁡ θ θ → 1 \frac{\sin\theta}{\theta}\to 1 θsinθ1

(2)

先求 lim ⁡ x → ∞ ln ⁡ [ ( 1 + 1 x ) x ] \underset{x\rightarrow \infty}{\lim}\ln \left[ \left( 1+\frac{1}{x} \right) ^x \right] xlimln[(1+x1)x]
ln ⁡ [ ( 1 + 1 x ) x ] = x ln ⁡ ( 1 + 1 x ) = ln ⁡ ( 1 + 1 x ) 1 x = t = 1 x ln ⁡ ( 1 + t ) t \ln \left[ \left( 1+\frac{1}{x} \right) ^x \right] =x\ln \left( 1+\frac{1}{x} \right) =\frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}}\xlongequal{t=\frac{1}{x}}\frac{\ln \left( 1+t \right)}{t} ln[(1+x1)x]=xln(1+x1)=x1ln(1+x1)t=x1 tln(1+t)
由于 ln ⁡ 1 = 0 \ln 1=0 ln1=0
ln ⁡ [ ( 1 + 1 x ) x ] = ln ⁡ ( 1 + t ) − ln ⁡ ( 1 ) t \ln \left[ \left( 1+\frac{1}{x} \right) ^x \right] =\frac{\ln \left( 1+t \right) -\ln \left( 1 \right)}{t} ln[(1+x1)x]=tln(1+t)ln(1)
x → ∞ x \to \infty x 时,有 t = 1 x → 0 t=\frac{1}{x}\to 0 t=x10
lim ⁡ t → 0 ln ⁡ ( 1 + t ) − ln ⁡ ( 1 ) t = d d x ln ⁡ ( x ) ∣ x = 1 = 1 \underset{t\rightarrow 0}{\lim}\frac{\ln \left( 1+t \right) -\ln \left( 1 \right)}{t}=\left. \frac{d}{dx}\ln \left( x \right) \right|_{x=1}=1 t0limtln(1+t)ln(1)=dxdln(x)x=1=1

lim ⁡ x → ∞ ln ⁡ [ ( 1 + 1 x ) x ] = 1 \underset{x\rightarrow \infty}{\lim}\ln \left[ \left( 1+\frac{1}{x} \right) ^x \right]=1 xlimln[(1+x1)x]=1

lim ⁡ x → ∞ e ln ⁡ [ ( 1 + 1 x ) x ] = e \underset{x\rightarrow \infty}{\lim}e^{\ln \left[ \left( 1+\frac{1}{x} \right) ^x \right]}=e xlimeln[(1+x1)x]=e

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \underset{x\rightarrow \infty}{\lim}\left( 1+\frac{1}{x} \right) ^x=e xlim(1+x1)x=e

你可能感兴趣的:(数学,几何学)