Go语言中使用goroutine非常简单,只需要在调用函数的时候在前面加上go关键字,就可以为一个函数创建一个goroutine。
启动单个goroutine
启动goroutine的方式非常简单,只需要在调用的函数(普通函数和匿名函数)前面加上一个go关键字。
func hello() {
fmt.Println("Hello Goroutine!")
}
func main() {
hello()
fmt.Println("main goroutine done!")
}
Hello Goroutine!
后打印main goroutine done!
。接下来我们在调用hello函数前面加上关键字go,也就是启动一个goroutine去执行hello这个函数。
func main() {
go hello() // 启动另外一个goroutine去执行hello函数
fmt.Println("main goroutine done!")
}
main goroutine done!
,并没有打印Hello Goroutine!
。main()
函数创建一个默认的goroutine
。当main()
函数返回的时候该goroutine就结束了,所有在main()函数中启动的goroutine会一同结束使用time.Sleep
对 子进程 grouptine 进行等待
func main() {
go hello() // 启动另外一个goroutine去执行hello函数
fmt.Println("main goroutine done!")
time.Sleep(time.Second)
}
启动多个 goroutine
这里使用了sync.WaitGroup
来实现goroutine的同步, 有点像java里面的Countdown
var wg sync.WaitGroup
func hello(i int) {
defer wg.Done() // goroutine结束就登记-1
fmt.Println("Hello Goroutine!", i)
}
func main() {
for i := 0; i < 10; i++ {
wg.Add(1) // 启动一个goroutine就登记+1
go hello(i)
}
wg.Wait() // 等待所有登记的goroutine都结束
}
例子:
123
,结果为1+2+3=6
package main
import (
"fmt"
"math/rand"
)
type Job struct {
// id
Id int
// 需要计算的随机数
RandNum int
}
type Result struct {
// 这里必须传对象实例
job *Job
// 求和
sum int
}
func main() {
// 需要2个管道
// 1.job管道
jobChan := make(chan *Job, 128)
// 2.结果管道
resultChan := make(chan *Result, 128)
// 3.创建工作池
createPool(64, jobChan, resultChan)
// 4.开个打印的协程
go func(resultChan chan *Result) {
// 遍历结果管道打印
for result := range resultChan {
fmt.Printf("job id:%v randnum:%v result:%d\n", result.job.Id,
result.job.RandNum, result.sum)
}
}(resultChan)
var id int
// 循环创建job,输入到管道
for {
id++
// 生成随机数
r_num := rand.Int()
job := &Job{
Id: id,
RandNum: r_num,
}
jobChan <- job
}
}
// 创建工作池
// 参数1:开几个协程
func createPool(num int, jobChan chan *Job, resultChan chan *Result) {
// 根据开协程个数,去跑运行
//多个线程一起跑,计算jobChan中的任务
for i := 0; i < num; i++ {
go func(jobChan chan *Job, resultChan chan *Result) {
// 执行运算
// 遍历job管道所有数据,进行相加
for job := range jobChan {
// 随机数接过来
r_num := job.RandNum
// 随机数每一位相加
// 定义返回值
var sum int
for r_num != 0 {
tmp := r_num % 10
sum += tmp
r_num /= 10
}
// 想要的结果是Result
r := &Result{
job: job,
sum: sum,
}
//运算结果扔到管道
resultChan <- r
}
}(jobChan, resultChan)
}
}
Timer:时间到了,执行只执行1次
package main
import (
"fmt"
"time"
)
func main() {
// 1.timer基本使用
timer1 := time.NewTimer(2 * time.Second)
t1 := time.Now()
fmt.Printf("t1:%v\n", t1)
t2 := <-timer1.C
fmt.Printf("t2:%v\n", t2)
// 2.验证timer只能响应1次
//timer2 := time.NewTimer(time.Second)
//for {
//<-timer2.C
//fmt.Println("时间到")
//}
// 3.timer实现延时的功能
//(1)
//time.Sleep(time.Second)
//(2)
timer3 := time.NewTimer(2 * time.Second)
<-timer3.C
fmt.Println("2秒到")
//(3)
<-time.After(2*time.Second)
fmt.Println("2秒到")
// 4.停止定时器
timer4 := time.NewTimer(2 * time.Second)
go func() {
<-timer4.C
fmt.Println("定时器执行了")
}()
b := timer4.Stop()
if b {
fmt.Println("timer4已经关闭")
}
// 5.重置定时器
timer5 := time.NewTimer(3 * time.Second)
timer5.Reset(1 * time.Second)
fmt.Println(time.Now())
fmt.Println(<-timer5.C)
for {
}
}
Ticker:时间到了,多次执行
package main
import (
"fmt"
"time"
)
func main() {
// 1.获取ticker对象
ticker := time.NewTicker(1 * time.Second)
i := 0
// 子协程
go func() {
for {
//<-ticker.C
i++
fmt.Println(<-ticker.C)
if i == 5 {
//停止
ticker.Stop()
}
}
}()
for {
}
}
package main
import (
"fmt"
"runtime"
)
func main() {
go func(s string) {
for i := 0; i < 2; i++ {
fmt.Println(s)
}
}("world")
// 主协程
for i := 0; i < 2; i++ {
// 切一下,再次分配任务
runtime.Gosched()
fmt.Println("hello")
}
}
package main
import (
"fmt"
"runtime"
)
func main() {
go func() {
defer fmt.Println("A.defer")
func() {
defer fmt.Println("B.defer")
// 结束协程
fmt.Println("f.ok")
runtime.Goexit()
defer fmt.Println("C.defer")
fmt.Println("B")
}()
fmt.Println("A")
}()
for {
}
}
结果如下:
f.ok
B.defer
A.defer
GOMAXPROCS
参数来确定需要使用多少个OS线程来同时执行Go代码。GOMAXPROCS是m:n调度中的n
)。runtime.GOMAXPROCS()
函数设置当前程序并发时占用的CPU逻辑核心数。我们可以通过将任务分配到不同的 CPU 逻辑核心上实现并行的效果,这里举个例子:
func a() {
for i := 1; i < 10; i++ {
fmt.Println("A:", i)
}
}
func b() {
for i := 1; i < 10; i++ {
fmt.Println("B:", i)
}
}
func main() {
runtime.GOMAXPROCS(1)
go a()
go b()
time.Sleep(time.Second)
}
两个任务只有一个逻辑核心,此时是做完一个任务再做另一个任务。 将逻辑核心数设为2,此时两个任务并行执行,代码如下。
func a() {
for i := 1; i < 10; i++ {
fmt.Println("A:", i)
}
}
func b() {
for i := 1; i < 10; i++ {
fmt.Println("B:", i)
}
}
func main() {
runtime.GOMAXPROCS(2)
go a()
go b()
time.Sleep(time.Second)
}
Go语言中的操作系统线程和goroutine的关系:
虽然 groutine 之间可以使用共享内存进行数据交换,但是共享内存在不同的goroutine 中容易发生竞态问题。为了保证数据交换的正确性,必须使用互斥量对内存进行加锁,这种做法势必造成性能问题。
如果说goroutine是Go程序并发的执行体,channel就是它们之间的连接。channel是可以让一个goroutine发送特定值到另一个goroutine的通信机制。
channel 是一种类型,一种引用类型。声明通道类型的格式如下:
var 变量 chan 元素类型
var ch1 chan int // 声明一个传递整型的通道
var ch2 chan bool // 声明一个传递布尔型的通道
var ch3 chan []int // 声明一个传递int切片的通道
声明通道: 通道是引用类型,通道类型的空值是nil
。
var ch chan int
fmt.Println(ch) //
声明的通道后需要使用make函数初始化之后才能使用。
实例化通道: 创建channel的格式如下:
make(chan 元素类型, [缓冲大小])
channel的缓冲大小是可选的。
ch4 := make(chan int)
ch5 := make(chan bool)
ch6 := make(chan []int)
通道有发送(send)、接收(receive)和关闭(close)
三种操作。
<-
符号。现在我们先使用以下语句定义一个通道:
ch := make(chan int)
//发送
// 将一个值发送到通道中。
ch <- 10 // 把10发送到ch中
//接收
//从一个通道中接收值。
x := <- ch // 从ch中接收值并赋值给变量x
<-ch // 从ch中接收值,忽略结果
//关闭
//我们通过调用内置的close函数来关闭通道。
close(ch)
关于关闭通道需要注意的事情是,
关闭后的通道有以下特点:
无缓冲的通道又称为阻塞的通道。我们来看一下下面的代码:
func main() {
ch := make(chan int)
ch <- 10
fmt.Println("发送成功")
}
上面这段代码能够通过编译,但是执行的时候会出现以下错误:
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
.../src/github.com/pprof/studygo/day06/channel02/main.go:8 +0x54
ch := make(chan int)
创建的是无缓冲的通道,无缓冲的通道只有在有人接收值的时候才能发送值。上面的代码会阻塞在ch <- 10这一行代码形成死锁,那如何解决这个问题呢?
一种方法是启用一个goroutine去接收值,例如:
func recv(c chan int) {
ret := <-c
fmt.Println("接收成功", ret)
}
func main() {
ch := make(chan int)
go recv(ch) // 启用goroutine从通道接收值
ch <- 10
fmt.Println("发送成功")
}
无缓冲通道上的发送操作会阻塞,直到另一个goroutine在该通道上执行接收操作,这时值才能发送成功,两个goroutine将继续执行。
相反,如果接收操作先执行,接收方的goroutine将阻塞,直到另一个goroutine在该通道上发送一个值。
使用无缓冲通道进行通信将导致发送和接收的goroutine同步化。因此,无缓冲通道也被称为同步通道。
解决上面问题的方法还有一种就是使用有缓冲区的通道。我们可以在使用make函数初始化通道的时候为其指定通道的容量,例如:
func main() {
ch := make(chan int, 1) // 创建一个容量为1的有缓冲区通道
ch <- 10
fmt.Println("发送成功")
}
len函数
获取通道内元素的数量,使用cap函数
获取通道的容量,虽然我们很少会这么做。通过内置的close()函数关闭channel(如果你的管道不往里存值或者取值的时候一定记得关闭管道)
package main
import "fmt"
func main() {
c := make(chan int)
go func() {
for i := 0; i < 5; i++ {
c <- i
}
close(c)
}()
for {
if data, ok := <-c; ok {
fmt.Println(data)
} else {
break
}
}
fmt.Println("main结束")
}
注意: 关闭已经关闭的channel也会引发panic。
我们来看下面这个例子:
// channel 练习
func main() {
ch1 := make(chan int)
ch2 := make(chan int)
// 开启goroutine将0~100的数发送到ch1中
go func() {
for i := 0; i < 100; i++ {
ch1 <- i
}
close(ch1)
}()
// 开启goroutine从ch1中接收值,并将该值的平方发送到ch2中
go func() {
for {
i, ok := <-ch1 // 通道关闭后再取值ok=false
if !ok {
break
}
ch2 <- i * i
}
close(ch2)
}()
// 在主goroutine中从ch2中接收值打印
for i := range ch2 { // 通道关闭后会退出for range循环
fmt.Println(i)
}
}
从上面可以看到从判断通道是否关闭的方式有两种:
!ok
for range
有的时候我们会将通道作为参数在多个任务函数间传递,很多时候我们在不同的任务函数中使用通道都会对其进行限制,比如限制通道在函数中只能发送或只能接收。
xxx chan<- xx
(只准输入) 还是 yyy<-chan xx
(只准输出)func counter(out chan<- int) {
for i := 0; i < 100; i++ {
out <- i
}
close(out)
}
func squarer(out chan<- int, in <-chan int) {
for i := range in {
out <- i * i
}
close(out)
}
func printer(in <-chan int) {
for i := range in {
fmt.Println(i)
}
}
func main() {
ch1 := make(chan int)
ch2 := make(chan int)
go counter(ch1)
go squarer(ch2, ch1)
printer(ch2)
}
其中,
chan<- int
是一个只能发送的通道,可以发送但是不能接收;<-chan int
是一个只能接收的通道,可以接收但是不能发送。1.1.10. 通道总结
channel常见的异常总结,如下图: