- 阿里也出手了!十分钟接入Spring Cloud Alibaba AI 体验JAVA微服务AI人工智能,可接通义千问等模型,
Java斌
十分钟学会JavaAI人工智能java微服务
什么是SpringAISpringAI是从著名的Python项目LangChain和LlamaIndex中汲取灵感,它不是这些项目的直接移植,它的成立信念是,「下一波生成式人工智能应用程序将不仅适用于Python开发人员,而且将在许多编程语言中无处不在」。我们可以从SpringAI的官网描述中,总结出SpringAI的几个核心的关键词:提供抽象能力简化AI应用的开发模型与向量支持AI集成与自动配置
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- 【人工智能之大模型】思维链(Chain of Thought,CoT) 在大模型中是如何引导模型逐步推理的?
985小水博一枚呀
人工智能pytorch语言模型大模型
【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?文章目录【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?前言思维链(CoT)在大模型中的应用示例示例任务:应用思维链提示:模型输出:分析:思维
- 什么是智能体(Agent)?
用什么都重名
大模型相关人工智能Agent大模型
目录前言一、大语言模型1.什么是大语言模型?2.应用领域二、什么是Agent三、Agent核心特点1.感知能力2.规划能力3.行动能力4.记忆能力总结前言目前智能体市场正处于快速发展阶段,呈现出市场规模增长迅猛、应用领域广泛、竞争格局多元化等特点。基于此,让我们一起来学习一下何为智能体。一、大语言模型1.什么是大语言模型?大语言模型是一种采用大量数据进行训练的人工智能模型,主要用于理解和生成自然语
- Python深度学习实践:建立端到端的自动驾驶系统
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:建立端到端的自动驾驶系统1.背景介绍自动驾驶系统是当今科技领域最具挑战性和前景的应用之一。它融合了计算机视觉、深度学习、规划与控制等多个领域的先进技术,旨在实现车辆的自主感知、决策和操控。随着人工智能技术的不断发展,越来越多的公司和研究机构投入了大量资源来开发自动驾驶系统。Python作为一种高效、易学且开源的编程语言,在这一领域扮演着重要角色。本文将探讨如何利用Pyth
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- 编程效率的飞跃、创新驱动的测试与行业应用的新篇章
###引言 在人工智能技术飞速发展的今天,AI工具、大模型及行业应用正在深刻改变着开发者的工作模式与各领域的发展格局。从智能编码助手到自动化测试平台,从大模型落地实践到垂直行业解决方案,AI正成为提升效率、驱动创新的核心引擎。本文将围绕“AI技术如何重塑你的工作与行业”这一主题,探讨AI工具、AI编程、AI测试以及AI行业应用和大模型落地等方面的影响。 ###一、AI工具重塑开发工作 #
- 中电金信 :十问高质量数据集:金融大模型价值重塑有“据”可循
2025年,随着大模型在金融领域的深度应用,高质量数据集已逐渐成为决定模型性能的“基石”。面对数据要素价值释放的关键机遇期,国家政策不断深入推进:2月,国务院国资委启动“AI+”专项行动,着力攻克数据难题;5月,数字中国峰会发布了首批30项央企AI高质量数据集成果;6月,在央国企金融领域人工智能高质量数据集工作推进会上,14家企业共同签署了“央国企金融数据产业共同体倡议书”,旨在推动人工智能与数据
- 毕业论文 | 人工智能侵权责任法律问题研究——以无人驾驶汽车为例
北斗猿
毕业论文设计人工智能无人驾驶法律侵权责任法民法典
===========================================github:https://github.com/MichaelBeechanCSDN:https://blog.csdn.net/u011344545===========================================人工智能侵权责任法律问题研究——以无人驾驶汽车为例目录摘要一、绪论(一)课
- 人工智能发展简史——未来是属于AI人工智能的。
AI天才研究院
ChatGPTAI人工智能与大数据人工智能
目录人工智能发展简史第一章:起步期-20世纪50年代及以前1.1计算机象棋博弈(Programmingacomputerforplayingchess)1.2图灵测试(TuringTest)1.3达特茅斯学院人工智能夏季研讨会(DartmouthSummerResearchConferenceonArtificialIntelligence)1.4感知机(Perceptrons)第二章:第一次浪潮
- 算法化资本——智能投顾技术重构金融生态的深度解析
田园Coder
人工智能科普人工智能科普
金融市场的数字化进程正经历着本质性跃迁。当传统交易大厅的开放式喊价被服务器集群的低频嗡鸣取代,当投资决策从人类直觉转向概率矩阵计算,一场由人工智能驱动的资本范式革命已悄然降临。智能投顾作为这场变革的核心载体,其技术架构不仅重塑财富管理的运作逻辑,更在认知层面挑战着金融市场的存在根基。理解这场变革的深度与广度,需要穿透技术表象,审视算法与资本结合引发的复杂生态嬗变。智能投顾系统的技术支柱建立于三重认
- AI“大航海”时代:企业人力资源的AI-HR实践与效能提升策略
在数字化浪潮的推动下,人工智能(AI)正以前所未有的速度渗透各行各业,人力资源管理(HR)领域也不例外。AI技术的引入与应用落地,不仅提升HR管理效率,更在深层次上带来人力资源运作模式的变革。什么是AI-HR所谓AI-HR,是指将人工智能技术应用于人力资源管理,并通过机器学习、自然语言处理、数据挖掘等技术,优化招聘、培训、绩效评估、员工关系等人力资源各个业务模块。近年来,随着AI技术的成熟和普及,
- 生成式人工智能认证(GAI认证)含金量怎么样?
技能咖
GAI认证生成式人工智能认证人工智能
当生成式人工智能(GenerativeAI)的浪潮以摧枯拉朽之势重塑职业版图时,一个尖锐的问题正悬在无数人的心头:在技术迭代比眨眼更快的时代,如何证明自己具备驾驭AI的核心能力?这场认知革命的背后,一张认证证书的价值早已超越了纸面——它既是个人能力的“信用背书”,也是企业筛选人才的“技术密码”。而生成式人工智能认证(GAI认证)的诞生,恰似一把打开未来之门的密钥,其含金量究竟几何?答案藏在三个维度
- SpringBoot多数据源动态切换方案:AbstractRoutingDataSource详解
fanxbl957
Webspringboot后端java
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot多数据源动态切换
- 深入解读MaaS技术架构:从模型服务到智能部署的全流程分析
Cc不爱吃洋葱
架构人工智能大语言模型大模型智能部署MaaS技术架构LLM
随着人工智能(AI)的迅速发展,MaaS(ModelasaService,模型即服务)技术架构应运而生。它通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。本文将深入解析MaaS技术架构,详细阐述其各个组成部分以及如何在实际应用中高效发挥其功能。一、使用方层:从应用接入到业务赋能MaaS技术架构的顶层是使用方层,它主要面向第三方应用,是企业与M
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 在学校研究学习的偏算法,秋招投递开发岗位还有希望吗
程序员
前言Thelasttime,Ihavelearned这是星球同学,在周五晚上答疑聊天的时候对我的提问:如果简历上的项目偏算法,但是自学了一些操作系统和计网的知识,秋招的时候投递偏开发的岗位有希望吗?简历上是否也要加上相关项目?估计也是很多朋友的疑问,毕竟很多同学读研,有些老师疯狂push,要成果,发论文。要想尽快发论文,那只能“研究”人工智能、算法的一些东西了。但是众所周知,算法要求很高,不仅要求
- 【AI论文】基于图像思维的多模态推理:理论基础、方法及未来前沿
东临碣石82
人工智能
摘要:近期,文本思维链(Chain-of-Thought,CoT)显著推动了多模态推理的进展。在这一范式下,模型在语言层面进行推理。然而,这种以文本为中心的方法将视觉信息视为静态的初始语境,从而在丰富的感知数据与离散的符号思维之间造成了根本性的“语义鸿沟”。人类认知往往超越语言的局限,将视觉作为动态的心理草图板加以利用。如今,人工智能领域也正经历着类似的演变,标志着从仅能对图像进行思考的模型向真正
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- 分库分表之实战-sharding-JDBC水平分库+水平分表配置实战
软件编程在线接单(需要可私)
分库分表后端java数据库mysql分布式
大家好,我是工藤学编程一个正在努力学习的小博主,期待你的关注实战代码系列最新文章C++实现图书管理系统(QtC++GUI界面版)SpringBoot实战系列【SpringBoot实战系列】Sharding-Jdbc实现分库分表到分布式ID生成器Snowflake自定义wrokId实战环境搭建大集合环境搭建大集合(持续更新)分库分表分库分表之实战-sharding-JDBC广播表前情摘要:1、数据库
- 人工智能-基础篇-23-智能体Agent到底是什么?怎么理解?(智能体=看+想+做)
weisian151
人工智能人工智能
1、智能体是什么?想象你有一个超级聪明的小助手,它能:自己看环境(比如看到天气、听到声音、读到数据);自己做决定(比如下雨了要关窗,电量低要去充电);自己动手干活(比如帮你订外卖、打扫房间、开车);越用越聪明(比如记住你的习惯,下次不用你提醒)。这个“小助手”就是智能体(Agent)——它是一个能自主感知、思考、行动并学习的系统,可以是软件(比如手机里的AI助手)、硬件(比如机器人),或者软硬结合
- 多角色AI Agent:基于LLM的虚拟角色扮演系统
AI天才研究院
AI人工智能与大数据人工智能ai
多角色AIAgent:基于LLM的虚拟角色扮演系统关键词多角色AIAgentLargeLanguageModel(LLM)虚拟角色扮演系统人工智能自然语言处理程序设计摘要本文旨在探讨多角色AIAgent的基础知识以及其如何在虚拟角色扮演系统中发挥作用。我们将首先介绍多角色AIAgent的概念、历史背景和基本原理。随后,我们将深入探讨LLM(大语言模型)在虚拟角色扮演系统中的应用,包括其工作原理、核
- 【算法】解数独:C++ 实现与策略探讨
master_chenchengg
算法提升算法java开发语言
【算法】解数独:C++实现与策略探讨一、引言:C++算法技术的魔力与解数独的智慧二、技术概述:数独求解的艺术定义与技术框架核心特性和优势代码示例:基础回溯解法三、技术细节:解数独的逻辑与挑战原理解析难点分析四、实战应用:从游戏到人工智能应用场景解决方案展示五、优化与改进潜在问题改进建议六、常见问题与解决方案七、总结与展望一、引言:C++算法技术的魔力与解数独的智慧在算法领域,C++凭借其高效、灵活
- FastMCP:用于构建MCP服务器的开源Python框架
NetX行者
AI编程服务器开源python
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- Tansformer的Multi-Head Attention组件
数字化与智能化
大模型基础Transformer框架transformer多头注意力机制
一、Transformer的注意力机制Transformer的注意力机制是对传统序列建模方法的颠覆性创新。它通过全局并行的关联计算解决了RNN的效率与长距离依赖瓶颈,通过动态权重和多头设计增强了模型对复杂信息的捕捉能力,最终成为现代人工智能的核心技术基石。其意义不仅在于提升了模型性能,更在于提供了一种“计算关联”的通用思路,推动了人工智能向更高效、更通用的方向发展。在Transformer之前,循
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- 实例化 OCR 对象的 predict() 方法介绍
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,