DV算法——毒性逆转题目图解

Consider Figure 5.7. Suppose there is another router w, connected to router y and z. The costs of all links are given as follows: c(x,y) = 4, c(x,z) = 50, c(y,w) = 1, c(z,w) = 1, c(y,z) = 3. Suppose that poisoned reverse is used in the distance-vector routing algorithm.

考虑图5.7。假设有另一个路由器w,连接到路由器y和z,所有链路的代价如下:c(x,y) = 4, c(x,z) = 50, c(y,w) = 1, c(z,w) = 1, c(y,z) = 3。假设在距离向量路由算法中使用了毒性逆转。

DV算法——毒性逆转题目图解_第1张图片

**a. When the distance vector routing is stabilized, router w, y, and z inform their distances to x to each other. What distance values do they tell each other?**当距离矢量路由稳定后,路由器w、y和z告知它们彼此到x的距离。它们告诉彼此的距离值是多少?

在距离向量路由算法中使用了毒性逆转:如果Z的最短路径要通过邻居Y,那么它将告诉Y自己到目的节点的距离是∞

路由w:告知y: D w ( x ) = ∞ D_w(x)=\infty Dw(x)=;告知z: D w ( x ) = 5 D_w(x)=5 Dw(x)=5

路由y:告知w: D y ( x ) = 4 D_y(x)=4 Dy(x)=4;告知z: D y ( x ) = 4 D_y(x)=4 Dy(x)=4

路由z:告知y: D z ( x ) = 6 D_z(x)=6 Dz(x)=6;告知w: D z ( x ) = ∞ D_z(x)=\infty Dz(x)=

**b. Now suppose that the link cost between x and y increases to 60. Will there be a count-to-infinity problem even if poisoned reverse is used? Why or why not? If there is a count-to-infinity problem, then how many iterations are needed for the distance-vector routing to reach a stable state again? Justify your answer.**现在假设x和y之间的连接成本增加到60。即使使用了毒性逆转,也会出现无穷计数问题吗?为什么或为什么不?如果存在一个无穷计数问题,那么距离矢量路由需要多少次迭代才能再次达到稳定状态?证明你的答案。

DV算法——毒性逆转题目图解_第2张图片

是的,这将是一个数到无穷大的问题。涉及3个或更多节点的环路无法用毒性逆转计数检测到。路由收敛过程如下表所示。

DV算法——毒性逆转题目图解_第3张图片

距离矢量路由需要31次迭代才能再次达到稳定状态

**c. How do you modify c(y,z) such that there is no count-to-infinity problem at all if c(y,x) changes from 4 to 60?**如果c(y,x)从4变到60,你如何修改c(y,z)使其完全不存在从数到∞的问题?

切断路由y与路由z的联系

你可能感兴趣的:(#,计算机网络学习,算法)