- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- 迁移学习基础知识
zhooooooou
深度学习迁移学习人工智能机器学习
简介使用迁移学习的优势:1、能够快速的训练出一个理想的结果2、当数据集较小时也能训练出理想的效果。注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。原理:对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。常见的迁移学习的方式:1、载入权重后训练所有参数
- 迁移学习入门
EmbodiedTech
人工智能大模型迁移学习人工智能机器学习
迁移学习1迁移学习的概念预训练模型定义:简单来说别人训练好的模型。一般预训练模型具备复杂的网络模型结构;一般是在大量的语料下训练完成的预训练语言模型的类别现在我们接触到的预训练语言模型,基本上都是基于transformer这个模型迭代而来的因此划分模型类别的时候,以transformer架构来划分:Encoder-Only:只有编码器部分的模型,代表:BERTDecoder-Only:只要解码器部
- 开启行业智变新征程,腾讯云架构师技术沙龙邀你解锁DeepSeek实战应用
deepseek
引言从2025开年的惊艳登场,到逐步落地的价值兑现,DeepSeek正以实战为突破点,推动AI技术落地的深水区变革。随着其工程化能力与行业场景的深度耦合,DeepSeek已从“技术验证”迈入“场景攻坚”阶段,互联网、金融、制造等行业的标杆案例接连涌现,一场由实战驱动的行业智变浪潮正席卷而来。当技术红利转化为生产力,企业如何应对算力瓶颈与场景碎片化的双重挑战?从系统工程化集成到跨模态迁移学习,Dee
- 机器学习驱动的智能化电池管理技术与应用
萌萌可爱郭德纲
机器学习人工智能
电池管理技术概述电池的工作原理与关键性能指标电池管理系统的核心功能ØSOC估计ØSOH估计Ø寿命预测Ø故障诊断人工智能机器学习基础人工智能的发展机器学习的关键概念机器学习在电池管理中的应用案例介绍人工智能在电池荷电状态估计中的应用荷电状态估计方法概述基于迁移学习的SOC估计(1)基于迁移学习的SOC估计方法数据集、估计框架、估计结果(2)全生命周期下的SOC估计方法数据集、估计框架、估计结果基于数
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- 《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》
机器学习司猫白
深度学习迁移学习keras分类tensorflowefficientnet性能优化
从零到精通的迁移学习实战指南:以Keras和EfficientNet为例一、为什么我们需要迁移学习?1.1人类的学习智慧想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(TransferLearning)的核心思想——将已掌握的知识迁移到新任务中。1.2深度学习的困境与破局传统深度
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 深度学习笔记——Resnet和迁移学习
肆——
深度学习深度学习笔记迁移学习
1.ResNet的提出深度学习与网络深度的挑战:在深度学习中,网络的“深度”(即层数)通常与模型的能力成正比。然而,随着网络深度的增加,一些问题也随之出现,最突出的是梯度消失/爆炸问题。这使得深层网络难以训练。梯度消失:梯度消失是指在训练深度神经网络时,通过多层传递的梯度(误差)变得非常小,接近于零。这导致网络中较早层的权重更新非常缓慢,甚至几乎不更新。梯度爆炸:梯度爆炸是指在训练深度神经网络时,
- OpenAI O1在跨语言生成中的应用:从多语言处理到文化适应性
喵手
AIGCAIGC
全文目录:开篇语前言目录1.OpenAIO1的多语言生成技术概述O1模型的架构大规模预训练与迁移学习2.O1如何处理语言文化差异语言的隐性差异与文化背景文化敏感内容生成3.O1在多语言环境中的应用跨语言生成自动翻译与多语言理解全球化内容创作4.O1在全球化内容创作中的作用多语言营销与定制化内容本地化与个性化创作5.自动翻译与跨语言理解的前景6.总结与未来展望文末开篇语哈喽,各位小伙伴们,你们好呀,
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- matlab连接散射点,使用小波散射做信号分类
死月絲卡蕾特
matlab连接散射点
在时间序列信号的深度学习第二部分,我们将介绍一下怎样使用小波散射做信号分类。本视频将分为两部分。第一部分中我们已经简单介绍一下深度学习,包括它的概念和工作流程等。并且我们演示了如何用时频变换,和基于卷积神经网络的迁移学习来做心电图信号的分类。第二部分中我们将首先介绍什么是小波散射,之后将聚焦在怎样使用小波散射技术也就是不变散射卷积网络做自动特征提取,和使用长短期记忆网络也就是LSTM(LongSh
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- DeepSeek模型微调的原理和方法
alankuo
人工智能
DeepSeek模型微调的原理迁移学习基础DeepSeek模型微调基于迁移学习的思想。预训练模型在大规模通用数据上进行了无监督或有监督的训练,学习到了丰富的语言知识、语义表示和通用模式。这些知识和模式具有一定的通用性,可以迁移到其他相关的任务中。在微调时,我们利用预训练模型已经学到的这些通用知识,针对特定的目标任务进行进一步的调整和优化,使得模型能够更好地适应新任务的需求。微调的参数更新机制在微调
- 【深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习】
生活De°咸鱼
AIGCJava深度学习大数据AIGC
深度学习大模型实例教程:Transformer架构、多模态模型与自监督学习1.深度学习基础概述1.1深度学习的核心概念1.2常见深度学习模型1.3大模型的挑战与解决方案2.数据准备2.1数据处理示例:CIFAR-103.构建深度学习模型4.训练模型5.使用预训练模型(迁移学习)6.Transformer架构6.1Transformer的核心原理6.2Transformer的基本组件6.3Trans
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- DeepSeek如何重塑我的编程学习:计算机新生的AI实践
EnigmaCoder
DeepSeek学习人工智能
目录前言邂逅DeepSeek:从困惑到惊喜初学编程的困境DeepSeek的优势️DeepSeek在编程学习中的运用注释算法逐步分析调试帮助跨语言迁移学习AI时代学习方法论革新知识获取方式转变新型学习能力培养反思与展望反思展望总结前言大家好!我是EnigmaCoder,本文我将介绍我的AI编程学习之旅。春节期间,DeepSeek横空出世,迅速登顶热榜。它功能强大,精准答疑、高效创作,瞬间点燃大众热情
- 【自然语言处理|迁移学习-08】:中文语料完型填空
爱学习不掉头发
深度学习自然语言处理(NLP)自然语言处理迁移学习人工智能
文章目录1中文语料完型填空任务介绍2数据集加载及处理3定义下游任务模型4模型训练5.模型测试1中文语料完型填空任务介绍任务介绍:完成中文语料完型填空完型填空是一个分类问题,[MASK]单词有21128种可能数据构建实现分析:使用迁移学习方式完成使用预训练模型bert模型提取文特征,后面添加全连接层和softmax进行单标签多分类2数据集加载及处理数据介绍:数据文件有三个train.csv,test
- 蓝耘服务器与DeepSeek的结合:引领智能化时代的新突破
Lethehong
热点时事服务器运维deepseekpython
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI目录蓝耘服务器与DeepSeek的结合:引领智能化时代的新突破一、蓝耘服务器的技术优势1、高性能计算能力2、可扩展性与高效存储3、绿色节能设计二、DeepSeek:智能算法的引擎1、高效的深度学习训练与推理2、自适应学习与迁移学习3、多任务学习三、蓝耘服务器与DeepSeek结合的优
- 大语言模型常用微调与基于SFT微调DeepSeek R1指南
知来者逆
LLM深度学习人工智能自然语言处理DeepSeekSFT微调
概述大型语言模型(LLM,LargeLanguageModel)的微调(Fine-tuning)是指在一个预训练模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,以使其在该领域或任务上表现更好。微调是迁移学习的一种常见方法,能够显著提升模型在特定任务上的性能。在大型语言模型(LLM)的微调中,有几种常见的方法,包括SFT(监督微调)、LoRA(低秩适应)、P-tuningv2和**Fre
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- 仅用10张图片,AI就能学会识别万物?多模态小样本学习颠覆传统!
沃恩智慧
人工智能深度学习人工智能学习深度学习
小样本学习与多模态结合是当前人工智能领域的热门研究方向,旨在通过结合多模态数据(如视觉、语言、音频等)来提高模型在数据稀缺情况下的学习效率和性能。例如,ZS-DeconvNet方法在Nature上发表,展示了其在极低训练数据需求下,将图像分辨率提升超过1.5倍衍射极限的能力。此外,CPE-CLIP和MMFL等方法通过利用预训练模型和冻结的大规模视觉语言模型,实现了跨会话的迁移学习和快速适应新样本。
- 基于PyTorch框架实现,展示如何使用ResNet50进行特征提取,并结合MMD用于领域适应,迁移学习在轴承故障诊断中的应用
QQ_767172261
轴承类pytorch迁移学习人工智能
基于PyTorch框架实现,展示如何使用ResNet50进行特征提取,并结合MMD用于领域适应,迁移学习在轴承故障诊断中的应用_迁移学习轴承诊断DAN:ResNet50-MMD以下文字及代码仅供参考。文章目录1.环境准备2.数据准备3.模型定义4.训练过程1.导入必要的库2.定义模型3.数据准备4.训练过程5.运行代码6.注意事项附说明:、pytorch版本,ResNet50进行特征提取,mmd最
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- DeepSeek迁移学习与预训练模型应用
Evaporator Core
DeepSeek快速入门人工智能深度学习迁移学习机器学习深度学习
迁移学习是一种利用预训练模型的知识来加速新任务训练的技术。通过迁移学习,我们可以在数据量有限的情况下,快速构建高性能的模型。DeepSeek提供了丰富的预训练模型和迁移学习工具,帮助我们高效地完成新任务的训练。本文将详细介绍如何使用DeepSeek进行迁移学习,并通过代码示例帮助你掌握这些技巧。1.迁移学习的基本概念迁移学习的核心思想是将在一个任务上学到的知识应用到另一个相关任务上。常见的迁移学习
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。