代码:
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
mat=sio.loadmat('ex8data1.mat')
print(mat.keys())# X Xval yval
X=mat['X']#(307,2)
Xval,yval=mat['Xval'],mat['yval']#(307,2)(307,1)
# 绘制初始图像
plt.plot(X[:,0],X[:,1],'bx')
plt.show()
# 1.获取训练集中样本特征的均值和方差
def estimateGaussianl(X,isCovariance):
means=np.mean(X,axis=0)
if isCovariance:
sigma2=(X-means).T@(X-means)/len(X)
else:
sigma2=np.var(X,axis=0)
return means,sigma2
# 2.多元正态分布密度函数
def gaussian(X,means,sigma2):
if np.ndim(sigma2)==1:
# 转为二维矩阵
sigma2=np.diag(sigma2)
X=X-means
n=X.shape[1]
first=np.power(2*np.pi,-n/2)*(np.linalg.det(sigma2)**(-0.5))#是一个数
second=np.diag([email protected](sigma2)@X.T)#(307,)
p=first*np.exp(-0.5*second)#(307,)
p=p.reshape(-1,1)#转化成一列
return p
# 3.绘图
def plotGaussian(X,means,sigma2):
x=np.arange(0,30,0.5)
y=np.arange(0,30,0.5)
xx,yy=np.meshgrid(x,y)
# 计算对应的高斯分布函数
z=gaussian(np.c_[xx.ravel(),yy.ravel()],means,sigma2)
zz=z.reshape(xx.shape)
plt.plot(X[:,0],X[:,1],'bx')
contour_levels=[10**h for h in range(-20,0,3)]
plt.contour(xx,yy,zz,contour_levels)
means,sigma2=estimateGaussianl(X,isCovariance=False)
plotGaussian(X,means,sigma2)
# 4.选取阈值
def selectThreshold(yval,p):
bestEpsilon=0
bestF1=0
# 候选值
epsilons=np.linspace(min(p),max(p),1000)
for e in epsilons:
p_=pbestF1:
bestF1=F1_e
bestEpsilon=e
return bestEpsilon,bestF1
means,sigma2=estimateGaussianl(X,isCovariance=False)
print(means,sigma2)
pval=gaussian(Xval,means,sigma2)
bestEpsilon,bestF1=selectThreshold(yval,pval)
# 找出异常点
p=gaussian(X,means,sigma2)
anoms=np.array([X[i] for i in range(X.shape[0]) if p[i]
结果展示: