作者介绍:Python领域优质创作者、华为云享专家、阿里云专家博主、2021年CSDN博客新星Top6
- 本文已收录于Python全栈系列专栏:《100天精通Python从入门到就业》
- 此专栏文章是专门针对Python零基础小白所准备的一套完整教学,从0到100的不断进阶深入的学习,各知识点环环相扣
- 订阅专栏后续可以阅读Python从入门到就业100篇文章;还可私聊进两百人Python全栈交流群(手把手教学,问题解答); 进群可领取80GPython全栈教程视频 + 300本计算机书籍:基础、Web、爬虫、数据分析、可视化、机器学习、深度学习、人工智能、算法、面试题等。
- 加入我一起学习进步,一个人可以走的很快,一群人才能走的更远!
程序:例如xxx.py这是程序,是一个静态的
进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。不仅可以通过线程完成多任务,进程也是可以的
工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态
multiprocessing
模块通过创建一个Process
对象然后调用它的start()
方法来生成进程,Process
与threading.Thread API
相同。
语法格式:multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
参数说明:
group
:指定进程组,大多数情况下用不到target
:如果传递了函数的引用,可以任务这个子进程就执行这里的代码name
:给进程设定一个名字,可以不设定args
:给target指定的函数传递的参数,以元组的方式传递kwargs
:给target指定的函数传递命名参数multiprocessing.Process 对象具有如下方法和属性:
方法名/属性 | 说明 |
---|---|
run() |
进程具体执行的方法 |
start() |
启动子进程实例(创建子进程) |
join([timeout]) |
如果可选参数 timeout 是默认值 None,则将阻塞至调用 join() 方法的进程终止;如果 timeout 是一个正数,则最多会阻塞 timeout 秒 |
name |
当前进程的别名,默认为Process-N,N为从1开始递增的整数 |
pid |
当前进程的pid(进程号) |
is_alive() |
判断进程子进程是否还在活着 |
exitcode |
子进程的退出代码 |
daemon |
进程的守护标志,是一个布尔值。 |
authkey |
进程的身份验证密钥。 |
sentinel |
系统对象的数字句柄,当进程结束时将变为 ready。 |
terminate() |
不管任务是否完成,立即终止子进程 |
kill() |
与 terminate() 相同,但在 Unix 上使用 SIGKILL 信号。 |
close() |
关闭 Process 对象,释放与之关联的所有资源 |
# -*- coding:utf-8 -*-
from multiprocessing import Process
import time
def run_proc():
"""子进程要执行的代码"""
while True:
print("----2----")
time.sleep(1)
if __name__=='__main__':
p = Process(target=run_proc)
p.start()
while True:
print("----1----")
time.sleep(1)
运行结果:
说明:创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process
实例,用start()
方法启动
# -*- coding:utf-8 -*-
from multiprocessing import Process
import os
import time
def run_proc():
"""子进程要执行的代码"""
print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号
print('子进程将要结束...')
if __name__ == '__main__':
print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号
p = Process(target=run_proc)
p.start()
# -*- coding:utf-8 -*-
from multiprocessing import Process
import os
from time import sleep
def run_proc(name, age, **kwargs):
for i in range(10):
print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
print(kwargs)
sleep(0.2)
if __name__=='__main__':
p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
p.start()
sleep(1) # 1秒中之后,立即结束子进程
p.terminate()
p.join()
# -*- coding:utf-8 -*-
from multiprocessing import Process
import os
import time
nums = [11, 22]
def work1():
"""子进程要执行的代码"""
print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
for i in range(3):
nums.append(i)
time.sleep(1)
print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
def work2():
"""子进程要执行的代码"""
print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))
if __name__ == '__main__':
p1 = Process(target=work1)
p1.start()
p1.join()
p2 = Process(target=work2)
p2.start()
运行结果:
in process1 pid=11349 ,nums=[11, 22]
in process1 pid=11349 ,nums=[11, 22, 0]
in process1 pid=11349 ,nums=[11, 22, 0, 1]
in process1 pid=11349 ,nums=[11, 22, 0, 1, 2]
in process2 pid=11350 ,nums=[11, 22]
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
方法名 | 说明 |
---|---|
q=Queue() |
初始化Queue()对象,若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头) |
Queue.qsize() |
返回当前队列包含的消息数量 |
Queue.empty() |
如果队列为空,返回True,反之False |
Queue.full() |
如果队列满了,返回True,反之False |
Queue.get([block[, timeout]]) |
获取队列中的一条消息,然后将其从列队中移除,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常。2、如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常 |
Queue.get_nowait() |
相当Queue.get(False) |
Queue.put(item,[block[, timeout]]) |
将item消息写入队列,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常。 2、如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常 |
Queue.put_nowait(item) |
相当Queue.put(item, False) |
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
#coding=utf-8
from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full()) #False
q.put("消息3")
print(q.full()) #True
#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
q.put("消息4",True,2)
except:
print("消息列队已满,现有消息数量:%s"%q.qsize())
try:
q.put_nowait("消息4")
except:
print("消息列队已满,现有消息数量:%s"%q.qsize())
#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
q.put_nowait("消息4")
#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
for i in range(q.qsize()):
print(q.get_nowait())
运行结果:
False
True
消息列队已满,现有消息数量:3
消息列队已满,现有消息数量:3
消息1
消息2
消息3
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print('Get %s from queue.' % value)
time.sleep(random.random())
else:
break
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print('')
print('所有数据都写入并且读完')
锁是为了确保数据一致性。比如读写锁,每个进程给一个变量增加 1,但是如果在一个进程读取但还没有写入的时候,另外的进程也同时读取了,并写入该值,则最后写入的值是错误的,这时候就需要加锁来保持数据一致性。
通过使用Lock来控制一段代码在同一时间只能被一个进程执行。Lock对象的两个方法,acquire()用来获取锁,release()用来释放锁。当一个进程调用acquire()时,如果锁的状态为unlocked,那么会立即修改为locked并返回,这时该进程即获得了锁。如果锁的状态为locked,那么调用acquire()的进程则阻塞。
1. Lock的语法说明:
lock = multiprocessing.Lock()
: 创建一个锁
lock.acquire()
:获取锁
lock.release()
:释放锁
with lock
:自动获取、释放锁 类似于 with open() as f:
2. 程序不加锁时:
import multiprocessing
import time
def add(num, value):
print('add{0}:num={1}'.format(value, num))
for i in range(0, 2):
num += value
print('add{0}:num={1}'.format(value, num))
time.sleep(1)
if __name__ == '__main__':
lock = multiprocessing.Lock()
num = 0
p1 = multiprocessing.Process(target=add, args=(num, 1))
p2 = multiprocessing.Process(target=add, args=(num, 2))
p1.start()
p2.start()
运行结果:运得没有顺序,两个进程交替运行
add1:num=0
add1:num=1
add2:num=0
add2:num=2
add1:num=2
add2:num=4
3. 程序加锁时:
import multiprocessing
import time
def add(num, value, lock):
try:
lock.acquire()
print('add{0}:num={1}'.format(value, num))
for i in range(0, 2):
num += value
print('add{0}:num={1}'.format(value, num))
time.sleep(1)
except Exception as err:
raise err
finally:
lock.release()
if __name__ == '__main__':
lock = multiprocessing.Lock()
num = 0
p1 = multiprocessing.Process(target=add, args=(num, 1, lock))
p2 = multiprocessing.Process(target=add, args=(num, 2, lock))
p1.start()
p2.start()
运行结果:只有当其中一个进程执行完成后,其它的进程才会去执行,且谁先抢到锁谁先执行
add1:num=0
add1:num=1
add1:num=2
add2:num=0
add2:num=2
add2:num=4
当需要创建的子进程数量不多时,可以直接利用
multiprocessing
中的Process
动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing
模块提供的Pool
方法。
语法格式:multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
参数说明:
processes
:工作进程数目,如果 processes 为 None,则使用 os.cpu_count() 返回的值。
initializer
:如果 initializer 不为 None,则每个工作进程将会在启动时调用 initializer(*initargs)。
maxtasksperchild
:一个工作进程在它退出或被一个新的工作进程代替之前能完成的任务数量,为了释放未使用的资源。
context
:用于指定启动的工作进程的上下文。
两种方式向进程池提交任务:
apply(func[, args[, kwds]])
:阻塞方式。
apply_async(func[, args[, kwds]])
:非阻塞方式。使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表
multiprocessing.Pool
常用函数:
方法名 | 说明 |
---|---|
close() |
关闭Pool,使其不再接受新的任务 |
terminate() |
不管任务是否完成,立即终止 |
join() |
主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用 |
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:
# -*- coding:utf-8 -*-
from multiprocessing import Pool
import os, time, random
def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d" % (msg,os.getpid()))
# random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))
po = Pool(3) # 定义一个进程池,最大进程数3
for i in range(0,10):
# Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
# 每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,))
print("----start----")
po.close() # 关闭进程池,关闭后po不再接收新的请求
po.join() # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
运行结果:
----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()
而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
# -*- coding:utf-8 -*-
# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random
def reader(q):
print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s" % q.get(True))
def writer(q):
print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in "itcast":
q.put(i)
if __name__=="__main__":
print("(%s) start" % os.getpid())
q = Manager().Queue() # 使用Manager中的Queue
po = Pool()
po.apply_async(writer, (q,))
time.sleep(1) # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据
po.apply_async(reader, (q,))
po.close()
po.join()
print("(%s) End" % os.getpid())
运行结果:
(11095) start
writer启动(11097),父进程为(11095)
reader启动(11098),父进程为(11095)
reader从Queue获取到消息:i
reader从Queue获取到消息:t
reader从Queue获取到消息:c
reader从Queue获取到消息:a
reader从Queue获取到消息:s
reader从Queue获取到消息:t
(11095) End
进程:能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
线程:能够完成多任务,比如 一个QQ中的多个聊天窗口
进程是系统进行资源分配和调度的一个独立单位.
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.
以后每周新文评论区抽两个粉丝送书,大家持续关注此专栏:《每周免费送书活动》专栏
【书籍内容简介】
- 本书以爬虫逆向方向的相关技术和岗位要求进行撰写,总结了爬虫的架构体系、主流框架和未来发展。书中包括各种自动化工具、抓包工具、逆向工具的使用。核心内容以Web Js逆向、安卓逆向、小程序逆向为主,结合三十多个实战案例进行分析,内容从易到难,循序渐进。另外还对主流的反爬虫技术进行了讲解,包括传输协议、验证码体系、字符集映射、行为和指纹等。扫描封底二维码,可获得反爬虫补充知识;扫描节中二维码,可获得配套视频讲解知识。
- 本书适合对爬虫逆向感兴趣,想进一步提升自我的程序员参考阅读。