《100天一起学习PyTorch》第五天:从0到1实现Softmax回归

《100天一起学习PyTorch》第五天:从0到1实现Softmax回归

  • ✨本文收录于《100天一起学习PyTorch》专栏,此专栏主要记录如何使用PyTorch实现深度学习笔记,尽量坚持每周持续更新,欢迎大家订阅!
  • 个人主页:JoJo的数据分析历险记
  • 个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 如果文章对你有帮助,欢迎✌关注点赞、✌收藏订阅专栏

参考资料:本专栏主要以沐神《动手学深度学习》为学习资料,记录自己的学习笔记,能力有限,如有错误,欢迎大家指正。同时沐神上传了的教学视频和教材,大家可以前往学习。

  • 视频:动手学深度学习
  • 教材:动手学深度学习

《100天一起学习PyTorch》第五天:从0到1实现Softmax回归_第1张图片

文章目录

  • 《100天一起学习PyTorch》第五天:从0到1实现Softmax回归
  • 写在前面
  • 1. 数据集导入
  • 2.初始化参数
  • 3.定义softmax回归
  • 4. 损失函数定义
  • 5.训练模型
  • 6.模型预测
  • 7.使用内置api简单实现softmax回归

写在前面

softmax回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签y可以取两个以上的值。本文基于MNIST手写数字数据集来演示如何使用Pytorch实现softmax回归。

1. 数据集导入

首先我们来简单的介绍一些softmax回归基本模型,基本思路如下:
P ( c l a s s = i ) = e i ∑ e i P(class=i) = \frac{e^i}{\sum e^i} P(class=i)=eiei

损失函数使用交叉熵
l ( y , y ^ ) = − 1 m ∑ y i l o g y ^ i l(y,\hat y) = -\frac{1}{m}\sum y_ilog{\hat y_i} l(y,y^)=m1yilogy^i

# 当如相关库
import torch
import torch.nn as nn
from torchvision import datasets,transforms
from torch.utils import data
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim

在这里与之前不同的是我们导入了torchvision,它是处理计算机视觉常用的一个库。沐神在这里使用了FashionMnist数据集,我在这里还是使用Mnist数据集,具体的下载代码如下所示。其中train参数可以设置训练集和测试集

trans = transforms.ToTensor()
train = datasets.MNIST(root='./data',download=True,train=True,transform=trans)
test = datasets.MNIST(root='./data',download=True,train=False,transform=trans)

Mnist数据集由10个数字的图像组成的。其中训练集有60000张图片,测试集有10000张图片。训练集用于模型的拟合,测试集用于评估模型的好坏

len(train), len(test)
(60000, 10000)

每张图片的像素均是28*28,并且是灰度图像,所以通道数为1

train[0][0].shape
torch.Size([1, 28, 28])

我们来看一下训练集中的特征和标签,.

X, y = next(iter(data.DataLoader(train, batch_size=25)))
y
tensor([5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9, 4, 0, 9, 1,
        1])

y代表的是0-9的数字,下面我们将图形绘制出来

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): 
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes
X, y = next(iter(data.DataLoader(train, batch_size=25)))
show_images(X.reshape(25, 28, 28), 2, 9)


《100天一起学习PyTorch》第五天:从0到1实现Softmax回归_第2张图片

可以看到第一张图片是5,第二张图片是0。接下来我们想要做的事情是,给电脑一张图片,如何让其返回一个正确的数字。

2.初始化参数

因为softmax回归需要输入的数据是一个向量,因此首先我们需要将数据进行转换,下面要注意初始化参数的大小。

num_inputs = 784
num_outputs = 10
# 初始化为正态分布
W = torch.normal(0,0.01,size = (num_inputs,num_outputs),requires_grad = True)
b = torch.zeros(num_outputs,requires_grad=True)

3.定义softmax回归

根据softmax回归定义,我们可以通过以下三步实现:

  • 1.对每一项求指数
  • 2.求和
  • 3.用每一行的数除以和

具体实现代码如下

def softmax(X):
    X_exp = torch.exp(X)
    s = X_exp.sum(1, keepdims=True)
    return X_exp / s

下面我们举一个简单的例子看一下softmax函数是如何工作的

z = torch.rand(3, 5)
h = softmax(z)
print(h)
tensor([[0.1768, 0.1426, 0.2773, 0.2582, 0.1450],
        [0.1580, 0.1307, 0.2118, 0.2411, 0.2583],
        [0.1863, 0.2572, 0.1148, 0.1996, 0.2420]])

这样就得出了每一个样本中每一类的概率

进一步定义softmax回归模型

def nex(X):
    return softmax((X.reshape((-1,W.shape[0])).matmul(W)+b))

4. 损失函数定义

在这里我们依然使用交叉熵函数处理多分类问题
损失函数:
l ( y , y ^ ) = − 1 m ∑ y i l o g y ^ i l(y,\hat y) = -\frac{1}{m}\sum y_ilog{\hat y_i} l(y,y^)=m1yilogy^i
其中 y i = 0 , 1 y_i=0,1 yi=0,1 y ^ i \hat{y}_i y^i是预测的概率

在这里我想介绍两种方法计算损失函数,一种的沐神介绍的,通过索引来进行计算,具体如下所示

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])# 这里使用y来进行索引

这里我们使用了y来进行索引,我们来看看一个具体的例子

y_true = torch.tensor([0,1])
y_hat = torch.tensor([[0.1,0.2,0.7],[0.3,0.5,0.2]])
y_hat[[0,1],y_true]
tensor([0.1000, 0.5000])

这里返回的是第一个样本中第一类是正确分类的,和第二个样本中的第二类是正确分类的。所以交叉熵的计算就是
− 1 2 ( 1 × l o g ( 0.1 ) + 1 × l o g ( 0.5 ) ) -\frac{1}{2}(1\times log(0.1)+ 1\times log(0.5)) 21(1×log(0.1)+1×log(0.5))

cross_entropy(y_hat,y_true).mean()
tensor(1.4979)

等价于:

(-np.log(0.1)-np.log(0.5))/2
1.4978661367769954

上面这种方式虽然简洁,但是可能不太好理解,下面介绍一种更直观的方式。首先我们要将y转换成one-hot编码。

y_true = torch.tensor([0,1])
y_hat = torch.tensor([[0.1,0.2,0.7],[0.3,0.5,0.2]])
y_one_hot = torch.zeros_like(y_hat)
y_one_hot.scatter_(1, y_true.unsqueeze(1), 1)
y_one_hot
tensor([[1., 0., 0.],
        [0., 1., 0.]])

可以看出此时的y_one_hot和y_hat维度相同,并且y_one_hot对应类上的元素是1,其余元素为0,此时再根据公式计算交叉熵即可

− 1 2 ( 1 × l o g ( 0.1 ) + 0 × l o g ( 0.2 ) + 0 × l o g ( 0.7 ) + 0 × l o g ( 0.2 ) + 1 × l o g ( 0.5 ) + 0 × l o g ( 0.3 ) -\frac{1}{2}(1\times log(0.1)+0\times log(0.2)+0\times log(0.7) +0 \times log(0.2) +1\times log(0.5)+0\times log(0.3) 21(1×log(0.1)+0×log(0.2)+0×log(0.7)+0×log(0.2)+1×log(0.5)+0×log(0.3)

cost = (y_one_hot * -torch.log(y_hat)).sum(dim=1).mean()
cost
tensor(1.4979)

可以看出两种方法得到的结果一致

def opt(W,b):
    return optim.SGD([W,b],lr=0.1)

5.训练模型

'''
初始化参数
'''
W = torch.zeros((784, 10), requires_grad=True)
b = torch.zeros(10, requires_grad=True)
'''
定义SGD优化器
'''
optimizer = optim.SGD([W, b], lr=0.1)

'''
训练模型
'''
nb_epochs = 1000
for epoch in range(nb_epochs + 1):

    z = net(X)#计算softmax回归结果 
    cost = cross_entropy(z,y)#计算损失函数
    # SGD求解参数
    optimizer.zero_grad()#初始化参数
    cost.mean().backward()#后向传播求参数
    optimizer.step()#更新参数
    if epoch % 100 == 0 :
        print('Epoch {:4d}/{} Cost: {:.6f}'.format(
            epoch, nb_epochs, cost.mean().item()
        ))
        
Epoch    0/1000 Cost: 2.302585
Epoch  100/1000 Cost: 0.055274
Epoch  200/1000 Cost: 0.026265
Epoch  300/1000 Cost: 0.017182
Epoch  400/1000 Cost: 0.012762
Epoch  500/1000 Cost: 0.010150
Epoch  600/1000 Cost: 0.008425
Epoch  700/1000 Cost: 0.007202
Epoch  800/1000 Cost: 0.006290
Epoch  900/1000 Cost: 0.005582
Epoch 1000/1000 Cost: 0.005018

6.模型预测

首先我们从测试集中随机抽取10个样本

X_test, y_test = next(iter(data.DataLoader(test, batch_size=10)))
show_images(X_test.reshape(10, 28, 28), 2, 5)
array([, , , ,
       , , , ,
       , ], dtype=object)


《100天一起学习PyTorch》第五天:从0到1实现Softmax回归_第3张图片

测试集拿到的十个数字为7,2,1,0,4,1,4,9,5,9下面我们用刚刚训练好的模型来预测,看看结果如何

z = net(X_test)
predict = z.argmax(dim=1)
predict
tensor([7, 3, 1, 0, 4, 1, 4, 1, 4, 7])

可以看出预测的结果有六个正确,四个错误,模型效果一般。因为我们刚刚只使用了训练集中的25个样本,所以在训练集上预测效果并不好。如何提升预测精度问题将在后续讨论。

7.使用内置api简单实现softmax回归

上面我们演示了如何从0到1实现softmax回归,在pytorch中,有内置的api可以直接帮我们更简洁的实现,具体代码如下

from torch import nn

# 一样导入数据集
X, y = next(iter(data.DataLoader(train, batch_size=25)))
# 定义模型
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))#nn.Flatten()的作用是将输入的特征转换为一个向量
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)#初始化参数
net.apply(init_weights)
#计算损失函数
loss = nn.CrossEntropyLoss(reduction='none')
# 定义SGD优化器
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
nb_epochs = 1000
for epoch in range(nb_epochs + 1):

    z = net(X)#计算模型结果
    cost = loss(z,y)#计算损失函数
    # SGD求解参数
    trainer.zero_grad()#初始化参数
    cost.mean().backward()#后向传播求参数
    trainer.step()#更新参数
    if epoch % 100 == 0 :
        print('Epoch {:4d}/{} Cost: {:.6f}'.format(
            epoch, nb_epochs, cost.mean().item()
        ))
Epoch    0/1000 Cost: 2.318002
Epoch  100/1000 Cost: 0.062154
Epoch  200/1000 Cost: 0.028716
Epoch  300/1000 Cost: 0.018596
Epoch  400/1000 Cost: 0.013739
Epoch  500/1000 Cost: 0.010891
Epoch  600/1000 Cost: 0.009021
Epoch  700/1000 Cost: 0.007699
Epoch  800/1000 Cost: 0.006715
Epoch  900/1000 Cost: 0.005955
Epoch 1000/1000 Cost: 0.005349

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

你可能感兴趣的:(pytorch,分类,深度学习,softmax回归,人工智能)