【GCN-RS系列汇总】十三篇文章、十六个模型梳理图神经网络协同过滤模型(附代码实现)

整理了博客已有的GCN-RS的文章,持续更新中。
一、【基础知识:DeepWalk、Node2Vector、GCN】
二、【经典工作:NGCF、LightGCN、LR-GCCF】
三、【多行为推荐:MBGCN】
四、【多关系推荐:GHCF】
五、【对比学习SGL】
六、【Item-KNN + WMF = UltraGCN】
七、【也是KNN算法:How Powerful GCN RS】
八、【YouTubeNet、MF又一春:SimpleX】
九、【GCN的难负样本:MixGCF】
(附赠Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering (NIPS 2020))
十、【GCN+NRF:GraphRFI】
十一、【两种正则化:DGCN-HN】

以上文章基本都是开源的,个人复现了部分代码,整理在了一个框架内,开源地址:RS_Zoos
【GCN-RS系列汇总】十三篇文章、十六个模型梳理图神经网络协同过滤模型(附代码实现)_第1张图片

参考文献:

  • Neural Graph Collaborative Filtering (SIGIR’19)
  • LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR 2020)
  • Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach (AAAI 2020)
  • Multi-behavior Recommendation with Graph Convolutional Networks (SIGIR 2020)
  • Graph Heterogeneous Multi-Relational Recommendation (AAAI 2021)
  • Self-supervised Graph Learning for Recommendation (SIGIR 2021)
  • UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation (CIKM’21) FuxiCTR、BARS副产物
  • SimpleX: A Simple and Strong Baseline for Collaborative Filtering (CIKM‘21) FuxiCTR、BARS副产物
  • How Powerful is Graph Convolution for Recommendation? (CIKM‘21)
  • Simplify and Robustify Negative Sampling for Implicit Collaborative Filtering (NIPS 2020)
  • MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems (KDD 2021)
  • GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection (SIGIR’20)
  • Deep GCN with Hybrid Normalization for Accurate and Diverse Recommendation (DLP-KDD‘21)

你可能感兴趣的:(论文解读,推荐系统,图神经网络,人工智能,推荐算法,机器学习,图神经网络)