Yolov5如何更换EIOU/alpha IOU?

Yolov5如何更换EIOU/alpha IOU?

文章目录

    • Yolov5如何更换EIOU/alpha IOU?
    • 1.EIoU更换方式
    • 2.alpha IoU更换方式
    • 3.IoU
    • 4.GIoU
    • 4.DIoU
    • 5.CIoU
    • 6.IoU原理


1.EIoU更换方式

第一步;将metrics.py文件中bbox_iou()替换为以下代码

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False,  EIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if GIoU or DIoU or CIoU or EIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU or EIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = cw ** 2 + eps
                ch2 = ch ** 2 + eps
                return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU

第二步;在utils/loss.py中,找到ComputeLoss类中的__call__()函数,把Regression loss中计算iou的代码,换成下面这句:

iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=False, EIoU=True)  
# iou(prediction, target)

在这里插入图片描述


2.alpha IoU更换方式

第一步;直接将utils/metrics.py文件中bbox_iou()替换,随后将bbox_alpha_iou()改为bbox_iou()

def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=3, eps=1e-7):
    # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    # change iou into pow(iou+eps)
    # iou = inter / union
    iou = torch.pow(inter/union + eps, alpha)
    # beta = 2 * alpha
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal
            rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
            rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
            rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha  # center distance
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha_ciou = v / ((1 + eps) - inter / union + v)
                # return iou - (rho2 / c2 + v * alpha_ciou)  # CIoU
                return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            # c_area = cw * ch + eps  # convex area
            # return iou - (c_area - union) / c_area  # GIoU
            c_area = torch.max(cw * ch + eps, union) # convex area
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU
    else:
        return iou # torch.log(iou+eps) or iou

第二步;在utils/loss.py中,找到ComputeLoss类中的__call__()函数,把Regression loss中计算iou的代码,换成下面这句:
在这里插入图片描述


下面这几个IoU方法源码里写到一起了,通过给相应的IoU置为True就可以打开。

3.IoU

def Iou_loss(preds, bbox, eps=1e-6, reduction='mean'):
    '''
    preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    reduction:"mean"or"sum"
    return: loss
    '''
    x1 = torch.max(preds[:, 0], bbox[:, 0])
    y1 = torch.max(preds[:, 1], bbox[:, 1])
    x2 = torch.min(preds[:, 2], bbox[:, 2])
    y2 = torch.min(preds[:, 3], bbox[:, 3])
    
    w = (x2 - x1 + 1.0).clamp(0.)
    h = (y2 - y1 + 1.0).clamp(0.)
    inters = w * h
    print("inters:\n",inters)
 
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
    print("uni:\n",uni)
    ious = (inters / uni).clamp(min=eps)
    loss = -ious.log()
 
    if reduction == 'mean':
        loss = torch.mean(loss)
    elif reduction == 'sum':
        loss = torch.sum(loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss

4.GIoU

def Giou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py#L36
    :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :return: loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(0.)
    ih = (iy2 - iy1 + 1.0).clamp(0.)
 
    # overlap
    inters = iw * ih
    print("inters:\n",inters)
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters + eps
    print("uni:\n",uni)
    # ious
    ious = inters / uni
    print("Iou:\n",ious)
    ex1 = torch.min(preds[:, 0], bbox[:, 0])
    ey1 = torch.min(preds[:, 1], bbox[:, 1])
    ex2 = torch.max(preds[:, 2], bbox[:, 2])
    ey2 = torch.max(preds[:, 3], bbox[:, 3])
    ew = (ex2 - ex1 + 1.0).clamp(min=0.)
    eh = (ey2 - ey1 + 1.0).clamp(min=0.)
 
    # enclose erea
    enclose = ew * eh + eps
    print("enclose:\n",enclose)
 
    giou = ious - (enclose - uni) / enclose
    loss = 1 - giou
 
    if reduction == 'mean':
        loss = torch.mean(loss)
    elif reduction == 'sum':
        loss = torch.sum(loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss

4.DIoU

def Diou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    eps: eps to avoid divide 0
    reduction: mean or sum
    return: diou-loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(min=0.)
    ih = (iy2 - iy1 + 1.0).clamp(min=0.)
 
    # overlaps
    inters = iw * ih
 
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
 
    # iou
    iou = inters / (uni + eps)
    print("iou:\n",iou)
 
    # inter_diag
    cxpreds = (preds[:, 2] + preds[:, 0]) / 2
    cypreds = (preds[:, 3] + preds[:, 1]) / 2
 
    cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
    cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
 
    inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
    print("inter_diag:\n",inter_diag)
 
    # outer_diag
    ox1 = torch.min(preds[:, 0], bbox[:, 0])
    oy1 = torch.min(preds[:, 1], bbox[:, 1])
    ox2 = torch.max(preds[:, 2], bbox[:, 2])
    oy2 = torch.max(preds[:, 3], bbox[:, 3])
 
    outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
    print("outer_diag:\n",outer_diag)
 
    diou = iou - inter_diag / outer_diag
    diou = torch.clamp(diou, min=-1.0, max=1.0)
 
    diou_loss = 1 - diou
    print("last_loss:\n",diou_loss)
 
    if reduction == 'mean':
        loss = torch.mean(diou_loss)
    elif reduction == 'sum':
        loss = torch.sum(diou_loss)
    else:
        raise NotImplementedError
    return loss


5.CIoU

import math
def Ciou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/loss/multibox_loss.py
    :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param eps: eps to avoid divide 0
    :param reduction: mean or sum
    :return: diou-loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(min=0.)
    ih = (iy2 - iy1 + 1.0).clamp(min=0.)
 
    # overlaps
    inters = iw * ih
 
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
 
    # iou
    iou = inters / (uni + eps)
    print("iou:\n",iou)
 
    # inter_diag
    cxpreds = (preds[:, 2] + preds[:, 0]) / 2
    cypreds = (preds[:, 3] + preds[:, 1]) / 2
 
    cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
    cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
 
    inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
 
    # outer_diag
    ox1 = torch.min(preds[:, 0], bbox[:, 0])
    oy1 = torch.min(preds[:, 1], bbox[:, 1])
    ox2 = torch.max(preds[:, 2], bbox[:, 2])
    oy2 = torch.max(preds[:, 3], bbox[:, 3])
 
    outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
 
    diou = iou - inter_diag / outer_diag
    print("diou:\n",diou)
 
    # calculate v,alpha
    wbbox = bbox[:, 2] - bbox[:, 0] + 1.0
    hbbox = bbox[:, 3] - bbox[:, 1] + 1.0
    wpreds = preds[:, 2] - preds[:, 0] + 1.0
    hpreds = preds[:, 3] - preds[:, 1] + 1.0
    v = torch.pow((torch.atan(wbbox / hbbox) - torch.atan(wpreds / hpreds)), 2) * (4 / (math.pi ** 2))
    alpha = v / (1 - iou + v)
    ciou = diou - alpha * v
    ciou = torch.clamp(ciou, min=-1.0, max=1.0)
 
    ciou_loss = 1 - ciou
    if reduction == 'mean':
        loss = torch.mean(ciou_loss)
    elif reduction == 'sum':
        loss = torch.sum(ciou_loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss

6.IoU原理

这几种IoU的原理就引用【知乎江大白】老师的笔记了

目标检测任务的损失函数一般由Classificition Loss(分类损失函数)和Bounding Box Regeression Loss(回归损失函数)两部分构成。

Bounding Box Regeression的Loss近些年的发展过程是:Smooth L1 Loss-> IoU Loss(2016)-> GIoU Loss(2019)-> DIoU Loss(2020)->CIoU Loss(2020)

我们从最常用的IOU_Loss开始,进行对比拆解分析

a.IOU_Loss

Yolov5如何更换EIOU/alpha IOU?_第1张图片

可以看到IOU的loss其实很简单,主要是交集/并集,但其实也存在两个问题。

Yolov5如何更换EIOU/alpha IOU?_第2张图片

问题1:即状态1的情况,当预测框和目标框不相交时,IOU=0,无法反应两个框距离的远近,此时损失函数不可导,IOU_Loss无法优化两个框不相交的情况。

问题2:即状态2和状态3的情况,当两个预测框大小相同,两个IOU也相同,IOU_Loss无法区分两者相交情况的不同。

因此2019年出现了GIOU_Loss来进行改进。

b.GIOU_Loss
Yolov5如何更换EIOU/alpha IOU?_第3张图片

可以看到右图GIOU_Loss中,增加了相交尺度的衡量方式,缓解了单纯IOU_Loss时的尴尬。

但为什么仅仅说缓解呢?

因为还存在一种不足:

Yolov5如何更换EIOU/alpha IOU?_第4张图片

问题:状态1、2、3都是预测框在目标框内部且预测框大小一致的情况,这时预测框和目标框的差集都是相同的,因此这三种状态的GIOU值也都是相同的,这时GIOU退化成了IOU,无法区分相对位置关系。
基于这个问题,2020年的AAAI又提出了DIOU_Loss。

c.DIOU_Loss

好的目标框回归函数应该考虑三个重要几何因素:重叠面积、中心点距离,长宽比。

针对IOU和GIOU存在的问题,作者从两个方面进行考虑

一:如何最小化预测框和目标框之间的归一化距离?

二:如何在预测框和目标框重叠时,回归的更准确?

针对第一个问题,提出了DIOU_Loss(Distance_IOU_Loss)
Yolov5如何更换EIOU/alpha IOU?_第5张图片

DIOU_Loss考虑了重叠面积和中心点距离,当目标框包裹预测框的时候,直接度量2个框的距离,因此DIOU_Loss收敛的更快。

但就像前面好的目标框回归函数所说的,没有考虑到长宽比。

Yolov5如何更换EIOU/alpha IOU?_第6张图片

比如上面三种情况,目标框包裹预测框,本来DIOU_Loss可以起作用。

但预测框的中心点的位置都是一样的,因此按照DIOU_Loss的计算公式,三者的值都是相同的。

针对这个问题,又提出了CIOU_Loss,不对不说,科学总是在解决问题中,不断进步!!

d.CIOU_Loss

CIOU_Loss和DIOU_Loss前面的公式都是一样的,不过在此基础上还增加了一个影响因子,将预测框和目标框的长宽比都考虑了进去。

Yolov5如何更换EIOU/alpha IOU?_第7张图片

其中v是衡量长宽比一致性的参数,我们也可以定义为:

Yolov5如何更换EIOU/alpha IOU?_第8张图片

这样CIOU_Loss就将目标框回归函数应该考虑三个重要几何因素:重叠面积、中心点距离,长宽比全都考虑进去了。

再来综合的看下各个Loss函数的不同点:

IOU_Loss:主要考虑检测框和目标框重叠面积。
GIOU_Loss:在IOU的基础上,解决边界框不重合时的问题。
DIOU_Loss:在IOU和GIOU的基础上,考虑边界框中心点距离的信息。
CIOU_Loss:在DIOU的基础上,考虑边界框宽高比的尺度信息。


本人更多Yolov5(v6.1)实战内容导航

1.手把手带你调参Yolo v5 (v6.1)(一)

2.手把手带你调参Yolo v5 (v6.1)(二)

3.手把手带你Yolov5 (v6.1)添加注意力机制(一)(并附上30多种顶会Attention原理图)

4.手把手带你Yolov5 (v6.1)添加注意力机制(二)(在C3模块中加入注意力机制)

5.Yolov5如何更换激活函数?

6.如何快速使用自己的数据集训练Yolov5模型

7.Yolov5(v6.1)数据增强方式解析


你可能感兴趣的:(YOLOv5调参实战,深度学习,pytorch,神经网络)