# -*- coding: utf-8 -*-
"""
Meanshift算法目标跟踪
Meanshift算法可以参考:http://blog.csdn.net/carson2005/article/details/7337432
"""
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# 读取摄像头第一帧图像
ret, frame = cap.read()
while True:
ret, frame = cap.read()
if ret == True:
break
# 初始化位置窗口
r,h,c,w = 250,90,400,125 # simply hardcoded the values
track_window = (c,r,w,h)
# 设置所要跟踪的ROI
roi = frame[r:r+h, c:c+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# 设置终止条件
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while(1):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply meanshift to get the new location
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
# Draw it on image
x,y,w,h = track_window
img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv2.imshow('img2',img2)
k = cv2.waitKey(10) & 0xff
if k == 27:
break
else:
# cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.destroyAllWindows()
cap.release()