PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测

目录

  • I. 前言
  • II. 单步滚动预测
  • III. 代码实现
    • 3.1 数据处理
    • 3.2 模型搭建
    • 3.2 模型训练/测试
    • 3.3 实验结果
  • IV. 完整代码

I. 前言

在PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出中介绍了直接单输出的多步预测,本篇文章主要介绍单步滚动预测实现多步预测。

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  4. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  5. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  7. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)

II. 单步滚动预测

比如前10个预测后3个:我们首先利用[1…10]预测[11’],然后利用[2…10 11’]预测[12’],最后再利用[3…10 11’ 12’]预测[13’],也就是为了得到多个预测输出,我们直接预测多次,并且在每次预测时将之前的预测值带入。这种方法的缺点是显而易见的:由于每一步的预测都有误差,将有误差的预测值带入进行预测后往往会造成更大的误差,让误差传递。利用这种方式预测到后面通常预测值就完全不变了。

III. 代码实现

3.1 数据处理

我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来12个时刻的负荷(步长pred_step_size可调)。

数据处理代码:

# Single step scrolling data processing.
def nn_seq_sss(B):
    data = load_data()
    # 划分为训练集和测试集
    train = data[:int(len(data) * 0.7)]
    test = data[int(len(data) * 0.7):len(data)]

    def process(dataset, batch_size):
        load = dataset[dataset.columns[1]]
        load = load.tolist()
        m, n = np.max(load), np.min(load)
        load = (load - n) / (m - n)
        dataset = dataset.values.tolist()
        seq = []
        for i in range(len(dataset) - 24):
            train_seq = []
            train_label = []
            for j in range(i, i + 24):
                x = [load[j]]
                for c in range(2, 8):
                    x.append(dataset[j][c])
                train_seq.append(x)
            train_label.append(load[i + 24])
            train_seq = torch.FloatTensor(train_seq)
            train_label = torch.FloatTensor(train_label).view(-1)
            seq.append((train_seq, train_label))

        seq = MyDataset(seq)
        seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True)

        return seq, [m, n]

    Dtr, lis1 = process(train, B)
    Dte, lis2 = process(test, B)

    return Dtr, Dte, lis1, lis2

3.2 模型搭建

模型和之前的文章一致:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input_seq):
        batch_size, seq_len = input_seq[0], input_seq[1]
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        pred = self.linear(output)
        pred = pred[:, -1, :]
        return pred

3.2 模型训练/测试

模型训练代码和之前一致,模型滚动测试代码如下:

def ss_rolling_test(args, path, flag):
    """
    Single step scrolling.
    :param args:
    :param path:
    :param flag:
    :return:
    """
    Dtr, Dte, lis1, lis2 = load_data(args, flag, batch_size=1)
    pred = []
    y = []
    print('loading model...')
    input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
    output_size = args.output_size
    if args.bidirectional:
        model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    else:
        model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    # model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    model.load_state_dict(torch.load(path)['model'])
    model.eval()
    print('predicting...')
    Dte = [x for x in iter(Dte)]
    Dte = list_of_groups(Dte, args.pred_step_size)
    #
    for sub_item in tqdm(Dte):
        sub_pred = []
        for seq_idx, (seq, label) in enumerate(sub_item, 0):
            # 每个seq的batch都为1
            label = list(chain.from_iterable(label.data.tolist()))
            y.extend(label)
            if seq_idx != 0:
                seq = seq.cpu().numpy().tolist()[0]
                if len(sub_pred) >= len(seq):
                    for t in range(len(seq)):
                        seq[t][0] = sub_pred[len(sub_pred) - len(seq) + t]
                else:
                    for t in range(len(sub_pred)):
                        seq[len(seq) - len(sub_pred) + t][0] = sub_pred[t]
            else:
                seq = seq.cpu().numpy().tolist()[0]
            # print(new_seq)
            seq = [seq]
            seq = torch.FloatTensor(seq)
            seq = MyDataset(seq)
            seq = DataLoader(dataset=seq, batch_size=1, shuffle=False, num_workers=0)
            # print(new_seq)
            seq = [x for x in iter(seq)][0]
            # print(new_seq)
            with torch.no_grad():
                seq = seq.to(device)
                y_pred = model(seq)
                y_pred = list(chain.from_iterable(y_pred.data.tolist()))
                # print(y_pred)
                sub_pred.extend(y_pred)

        pred.extend(sub_pred)

    y, pred = np.array(y), np.array(pred)
    m, n = lis2[0], lis2[1]
    y = (m - n) * y + n
    pred = (m - n) * pred + n
    print('mape:', get_mape(y, pred))
    plot(y, pred)

简单解释一下上述滚动测试的代码:由于我们是前24个时刻预测未来12个时刻,数据的batch_size我们可以设置为1,然后每12个batch的数据放到一组:

Dte = [x for x in iter(Dte)]
Dte = list_of_groups(Dte, args.pred_step_size)

其中list_of_groups:

def list_of_groups(data, sub_len):
    groups = zip(*(iter(data),) * sub_len)
    end_list = [list(i) for i in groups]
    count = len(data) % sub_len
    end_list.append(data[-count:]) if count != 0 else end_list
    return end_list

list_of_groups的作用是将列表data中的数据每seq_len划分为一组,对应到本文中就是每12个batch的数据为一组。

正式预测时分为两种情况:如果预测的是每组(共12个样本)的第一个样本,那么直接预测,并将预测值保存到sub_pred中。如果不是预测第一个样本且之前已经预测了len个样本,那么就将当前样本对应的后len个负荷值替换为sub_pred中的值:

for sub_item in tqdm(Dte):
    sub_pred = []
    for seq_idx, (seq, label) in enumerate(sub_item, 0):
        # 每个seq的batch都为1
        label = list(chain.from_iterable(label.data.tolist()))
        y.extend(label)
        if seq_idx != 0:
            seq = seq.cpu().numpy().tolist()[0]
            # 如果当前预测长度已经大于seq,直接用sub_pred的后几个将seq中每个数组的第一个数字替换掉
            if len(sub_pred) >= len(seq):
                for t in range(len(seq)):
                    seq[t][0] = sub_pred[len(sub_pred) - len(seq) + t]
            else:
                # 否则, seq的后几个用sub_pred代替
                for t in range(len(sub_pred)):
                    seq[len(seq) - len(sub_pred) + t][0] = sub_pred[t]
        else:
            # 第一个直接预测
            seq = seq.cpu().numpy().tolist()[0]

3.3 实验结果

训练了50轮,前24个时刻预测未来12个负荷值,单步滚动预测,MAPE为10.62%:
PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测_第1张图片
效果还比较差,需要调调参,后续再更新了。

IV. 完整代码

稍作整理后续会放到GitHub。

你可能感兴趣的:(DL,pytorch,lstm,深度学习)