我尽量用尽可能短的语言将本文的核心内容浓缩到文章的标题中,前段时间给大家讲解Jetson Nano的部署,我们讲到用caffe在Nano上部署yolov3,感兴趣的童鞋可以看看之前的文章,然后顺便挖了一个坑:如何部署ONNX模型, 这个问题其实分为两个部分,第一是为什么要用ONNX,第二是如何部署ONNX。本文就是来填这个坑的。
TLTR,本文的核心思想包括:
题图是250fps的人脸检测模型,得益于TensorRT的加速。输入尺寸为1280x960.
现在大家都喜欢用pytorch训练模型,而pytorch训练的模型转成pth,用C++推理也很难达到真正的加速效果,因为本质上最耗时的网络前向推理部分并没有太多的加速。并且采用libtorch C++推理pytorch并不是一件简单的事情,除非你的模型可以被trace。
在这种情况之下,引入onnx更合理,从目前整个DL生态来看,onnx具有以下好处:
前段时间,我们release了一个retinaface的pytorch项目,并且我们想办法将它导出到了onnx模型,当然这期间经过一些修改,没有复杂模型的代码可以在不修改的情况下轻而易举export到onnx,关于这部分代码可以在我们的平台上找到:
http://manaai.cnmanaai.cn我们今天要做的事情,就是在上面的onnx模型的基础上,采用TensorRT来进行推理。先做一个简单的速度对比:
可以看到,采用TensorRT对ONNX模型加速,速度提升可以说是天囊之别。并且,采用TensorRT纯C++推理可以在语言层面获得更多的加速。我们实现的TensorRT加速的Retinaface应该是目前来讲面向GPU速度最快的检测方案,并且可以同时生成bbox和landmark,相比于MTCNN,模型更加简单,推理更加快速,准确度更高.
真正落地的算法部署,毫无疑问,假如你的target是GPU,采用ONNX+TensorRT应该是目前最成熟、最优化的方案。假如你的target是一些嵌入式芯片,那么采用MNN也是可以通过onnx轻松实现CPU嵌入式端快速推理的。
既然ONNX和TensorRT这么好,为什么都不用呢?为什么都还在用Python写难看的推理的代码呢?原因也很简单:
今天这篇教程便是教大家如何一步一步的实现TensorRT实现最快速的推理。先来看看实际TensorRT加速的效果:
看图片看不出啥来,看视频:
效果还是非常不错的。
retinaface是Insightface做的一个动作(DeepInsight), 但是原始的只有MXNet版本,这个网络模型具有小巧精度高特点,并且它是一个带有landmark分支输出的网络,这使得该模型可以输出landmark。
这个网络之所以叫做retina是因为它引入了FPN的结构和思想,使得模型在小尺度的脸上具有更好的鲁棒性。
在这里我们引入一个工具:sudo pip3 install onnxexplorer
可以快速的查看我们的onnx模型的结构,我们需要用到的onnx模型可以从这个地方下载:
我们做了一些修改使得pytorch的模型可以导出到onnx,并且我们做了一些特殊的处理,使得onnx模型可以通过 onnx2trt
转到TensorRT的engine。
接下来应该是本文的核心内容了,上面提到的 onnx2trt
可以通过编译 https://gitub.com/onnx/onnx-tensorrt
仓库,来得到 onnx2trt
,通过这个执行程序,可以将onnx转到trt的engine。
在这里,假如你是新手,有一点需要注意:
闲话不多说,假如我们拿到了trt的engine,我们如何进行推理呢?总的来说,分为3步:
ICudaEngine
, 这个是TensorRT推理的核心;当然这里最核心的东西其实就两个,一个是如何导入拿到CudaEngine,第二个是比较麻烦的后处理。
IBuilder* builder = createInferBuilder(gLogger);
assert(builder != nullptr);
nvinfer1::INetworkDefinition* network = builder->createNetwork();
auto parser = nvonnxparser::createParser(*network, gLogger);
if ( !parser->parseFromFile(modelFile.c_str(), static_cast(gLogger.reportableSeverity) ) )
{
cerr << "Failure while parsing ONNX file" << std::endl;
}
IHostMemory *trtModelStream{nullptr};
// Build the engine
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(1 << 30);
if (mTrtRunMode == RUN_MODE::INT8) {
std::cout << "setInt8Mode" << std::endl;
if (!builder->platformHasFastInt8())
std::cout << "Notice: the platform do not has fast for int8" << std::endl;
// builder->setInt8Mode(true);
// builder->setInt8Calibrator(calibrator);
cerr << "int8 mode not supported for now.n";
} else if (mTrtRunMode == RUN_MODE::FLOAT16) {
std::cout << "setFp16Mode" << std::endl;
if (!builder->platformHasFastFp16())
std::cout << "Notice: the platform do not has fast for fp16" << std::endl;
builder->setFp16Mode(true);
}
ICudaEngine* engine = builder->buildCudaEngine(*network);
assert(engine);
// we can destroy the parser
parser->destroy();
// serialize the engine, then close everything down
trtModelStream = engine->serialize();
trtModelStream->destroy();
InitEngine();
这个是我们维护的 onnx_trt_engine
的一部分,这段代码的作用是直接将你之前生成的trt engine,导入到你的ICudaEngine之中。大家如果需要完整的code,可以在我们的MANA平台上转到并下载:
大家可以看到,假如你想对模型进行进一步的加速,实际上也是在这上面进行。当你拿到你的 iCudaEngine
之后,剩下的事情就是根据你的model的output name拿到对应的输出。整个过程其实还是可以一气呵成的,唯一可能复杂一点的是你需要动态allocate对应大小size的data。
auto out1 = new float[bufferSize[1] / sizeof(float)];
auto out2 = new float[bufferSize[2] / sizeof(float)];
auto out3 = new float[bufferSize[3] / sizeof(float)];
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
CHECK(cudaMemcpyAsync(buffers[0], input, bufferSize[0], cudaMemcpyHostToDevice, stream));
// context.enqueue(batchSize, buffers, stream,nullptr);
context.enqueue(1, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(out1, buffers[1], bufferSize[1], cudaMemcpyDeviceToHost, stream));
CHECK(cudaMemcpyAsync(out2, buffers[2], bufferSize[2], cudaMemcpyDeviceToHost, stream));
CHECK(cudaMemcpyAsync(out3, buffers[3], bufferSize[3], cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// release the stream and the buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[0]));
CHECK(cudaFree(buffers[1]));
CHECK(cudaFree(buffers[2]));
CHECK(cudaFree(buffers[3]));
这是如何从TensorRT推理的结果转到我们的CPU上来,并且通过Async来同步数据,最终你拿到的数据将在你事先定义好的buffer里面,再进行后处理即可。
由于C++代码过于庞大和复杂,这些代码将会开源到我们的MANA AI平台。当然我们花费了很多力气来编写教程,并且提供源码,如果你对AI感兴趣,而缺乏一个好的学习群体和导师,不妨加入我们的会员计划,我们是一个致力于打造工业级前沿黑科技的AI学习者群体。
我们pytorch的训练代码可以在这里找到:
AI算法详情页manaai.cnTensorRT部署完整的代码可以在这里找到:
AI算法详情页manaai.cn我们看到,随着AI技术的不断成熟,大家已经不局限于用简单的python来编写古老的代码,我们致力于寻找更前沿的AI部署方案,TensorRT就是其中的一种,我们发现,通过对网络模型本身的思考优化、通过对我们网络计算框架的思考和优化、通过对编写网络推理语言和算法本身的思考和优化,构建了一道深不可测的技术瓶颈和壁垒。未来大家可能会看到,为什么你的MaskRCNN只有10fps,而别人的可以在全尺寸(1280p)下跑到35fps?
方寸之间,尽显功夫。
未来我们将继续在onnx-tensorrt的技术路线为大家奉献更加高质量的代码,我们的下一个目标是采用ONNX推理,并且用TensorRT加速MaskRCNN。Detectron2都发布了,这个还会远吗?Instance segmentation 和全景分割的Realtime inference是我们的终极目标!
其实看完这篇文章,建议大家可以做的事情:
当然,欢迎大家评论和转发,我们有机会也会开源我们踩坑之后的收获。
我们为维护、编写、创造这些代码花费了许多宝贵的时间,同时维护他们也需要海量的云平台,我们致力于帮助更多的初学者、中级学者、老司机提供完善的AI代码部署平台,如果你对AI感兴趣,可以通过我们的论坛来交流。
另外我们开通了Slack群,欢迎大家来交流: https://join.slack.com/t/manaai/shared_invite/enQtNzg5NjU2MTYyNTY2LWZjMzQ0NGRiYTZiMTg3ZDUyYzRiNmM4YzVjODZhNTE3NTY0MWRmNTJlZTJiZjIzOGVmZmQ3ODcxNzk4NWEyZDQ