- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- Unity团结引擎实战:鸿蒙游戏开发全指南
编号:0517
鸿蒙harmonyos5.0unity华为鸿蒙
鸿蒙游戏开发实战:Unity团结引擎适配指南与代码示例文/技术探索随着鸿蒙生态的快速扩张,Unity游戏向鸿蒙OS(OpenHarmony)的迁移已成为开发者新需求。本文将基于Unity团结引擎(专为鸿蒙定制的Unity分支),详解适配流程并提供可运行的代码示例。一、团结引擎:鸿蒙原生适配的核心工具Unity中国推出的团结引擎(基于Unity2022LTS定制)是当前唯一官方支持的鸿蒙适配方案,其
- 鸿蒙应用AR开发:增强现实技术实现方案
操作系统内核探秘
操作系统内核揭秘OSharmonyosar华为ai
鸿蒙应用AR开发:增强现实技术实现方案关键词:鸿蒙系统、AR开发、增强现实、ARKit、ARCore、3D渲染、计算机视觉摘要:本文将深入探讨如何在鸿蒙操作系统上开发增强现实(AR)应用。我们将从AR技术的基本原理讲起,逐步深入到鸿蒙AR开发框架的具体实现,包括3D模型渲染、空间定位、手势识别等核心技术。文章将提供完整的代码示例和实战项目,帮助开发者快速掌握鸿蒙AR应用开发的核心技能。背景介绍目的
- 大学专业科普 | 图像处理、智能控制与计算机工程
鸭鸭鸭进京赶烤
计算机工程
计算机工程专业介绍计算机工程专业是一个非常热门且具有广泛发展前景的领域,它涵盖了计算机硬件、软件以及它们之间的交互等多个方面。以下是对计算机工程专业的详细介绍:专业定义计算机工程专业主要是研究计算机系统的设计、开发、测试和维护。它融合了计算机科学和电子工程的知识,侧重于计算机硬件和软件的协同工作,以及计算机系统在各个领域的应用。课程设置基础课程数学课程物理课程计算机基础课程专业核心课程硬件方向课程
- 后端开发工程师(.Net方向)
Flora051
求职招聘
5年以上,23-30k职位描述:工作内容:1、负责相应产品模块的需求分析、框架设计和编码工作;2、分析项目需求,能给出良好的解决方案,并协助其他人员完成开发及调试工作;3、Codereview,编写单元测试,高质量完成功能;4、持续关注新的技术,选择适合的技术持续迭代改进产品。任职资格:1.计算机相关专业,必须本科及以上学历,5年以上.net研发经验(core3年以上);2.有医疗健康开发经验者优
- python递归实现乘法_算法-递归
weixin_39817012
python递归实现乘法
我们在前面学习过递归函数,递归函数采用的就是递归算法,前面我们通过最常见的菲波那切数列去学习了递归函数,这一节我们再来详细了解一下递归算法。1.递归算法递归算法(英语:recursionalgorithm)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念,递归算法有三个特点:1)递归的过程一
- Ultralytics YOLO 库介绍与使用指南
东北豆子哥
人工智能/机器学习YOLO
文章目录UltralyticsYOLO库介绍与使用指南主要特点安装基本使用1.使用预训练模型进行推理2.训练自定义模型3.验证模型4.导出模型高级功能1.使用不同任务模型2.使用自定义数据集3.跟踪对象(结合ByteTrack)常见问题解决性能优化技巧UltralyticsYOLO库介绍与使用指南UltralyticsYOLO是一个流行的计算机视觉库,专注于实现和优化YOLO(YouOnlyLoo
- KITTI数据集可视化实用教程及源码解析
国营窝窝乡蛮大人
本文还有配套的精品资源,点击获取简介:本文详细介绍如何使用源码实现KITTI数据集的可视化,强调数据集可视化在计算机视觉领域的关键作用。重点介绍如何加载、处理和融合KITTI数据集中的图像和激光雷达数据,并通过可视化手段分析结果,包括图像点云投影、坐标转换、颜色映射等技术。读者将通过学习源码深入理解数据结构、文件格式,并定制化工具以满足特定项目需求。1.计算机视觉数据集可视化的重要性在计算机视觉领
- DiNA:扩张邻域注意力 Transformer
AI专题精讲
Paper阅读transformer人工智能
摘要Transformer正迅速成为跨模态、跨领域和跨任务中应用最广泛的深度学习架构之一。在计算机视觉领域,除了持续发展的纯transformer架构,分层transformer也因其优越的性能和在现有框架中易于集成而受到广泛关注。这类模型通常采用局部化的注意力机制,如滑动窗口的NeighborhoodAttention(NA)或SwinTransformer的ShiftedWindowSelfA
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- 版本混乱的三大 “罪魁祸首”,你踩中了几个?不用焦虑 如方文控帮你解决
Ru_fang
大数据网络笔记
1.手工管理VS数字化浪潮:落后工具埋下隐患仍用“邮件传文件”“U盘拷资料”的企业,如同用算盘对抗计算机:版本迭代全靠人工标注,“v1.0”“v1.0改”“最终版v1.1”混杂,谁也说不清哪个是“真・最新版”。2.流程缺失:谁都能改,谁都不管某制造业企业的教训极具代表性:技术部修改图纸后直接发工作群,生产部未收到通知仍按旧版投产,2000件半成品因尺寸偏差报废。缺乏“起草-审核-发布-归档”标准化
- 计算机系统中隐藏的‘时间陷阱’——为什么你的代码总比预期慢10倍?
尤物程序猿
java开发语言
引言大家经常遇到一个诡异现象:明明算法时间复杂度算得好好的,为什么实际运行速度总比预期慢得多?你以为是数据库查询的锅,优化了SQL却收效甚微;你怀疑是网络延迟,但抓包数据又显示一切正常。这背后可能隐藏着计算机系统中鲜为人知的“时间陷阱”——那些未被计入传统性能分析,却真实吞噬效率的底层机制。本文将揭示5个最典型的陷阱,从CPU缓存失效到操作系统调度暗坑,并用真实案例展示如何绕过它们。陷阱1:CPU
- 【学习】《算法图解》第九章学习笔记:迪杰斯特拉算法
程序员
一、迪杰斯特拉算法概述迪杰斯特拉算法(Dijkstra'salgorithm)是一种解决带权有向图上单源最短路径问题的贪心算法,由荷兰计算机科学家艾兹赫尔·迪杰斯特拉(EdsgerW.Dijkstra)于1956年提出。该算法常用于路由协议,也可以用作其他图算法的子程序。(一)算法适用场景迪杰斯特拉算法适用于:带权有向图(每条边都有权重)所有权重都为非负值(不能有负权边)需要找出从一个顶点到图中所
- 什么是分布式系统?
大家好,我是锋哥。今天分享关于【什么是分布式系统?】面试题。希望对大家有帮助;什么是分布式系统?超硬核AI学习资料,现在永久免费了!分布式系统是指由多个独立的计算节点(计算机或设备)组成的系统,这些节点通过网络进行通信与协调,完成共同的任务。每个节点通常有自己的处理器、内存和存储,而系统的整体目标是通过这些节点的协作来提供一种统一的服务。分布式系统的主要特点:节点独立性:每个节点都有自己的硬件和操
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 中国各省英文缩写
后会无期77
通用资源配置
数据对照来源:中国各省的英文及简写-豆丁网安徽,皖:Anhui,简称AH北京,京:Beijing,简称BJ福建,闽:Fujian,简称FJ甘肃,甘:Gansu,简称GS广东,粤:Guangdong,简称GD广西,桂:Guangxi,简称GX贵州,黔:Guizhou,简称GZ海南,琼:Hainan,简称HI河北,冀:Hebei,简称HE河南,豫:Henan,简称HA黑龙江,黑:Heilongjian
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- ASP.Net依赖注入!使用Microsoft.Extensions.DependencyInjection配置依赖注入
weixin_44710358
c#asp.net依赖注入
文章目录前言一、依赖注入是什么?二、使用步骤三、示例四、依赖注入服务生命周期五、依赖注入的方式前言ASP.Net依赖注入!使用Microsoft.Extensions.DependencyInjection配置依赖注入一、依赖注入是什么?百度百科:控制反转(InversionofControl,缩写为IoC),是面向对象编程中的一种设计原则,可以用来减低计算机代码之间的耦合度。其中最常见的方式叫做
- 数智助农 金融兴乡:中和农信双轮驱动农业现代化实践
雷焰财经
金融
植根三农服务最后一百米,中和农信以“小额信贷夯基,数智科技赋能”的创新实践,正在成为衔接中国小农户与现代农业的关键纽带。在我国小农户占比超80%的基本国情下,面对农村互联网普及率仅60%的数字鸿沟挑战,中和农信依托深耕多年建立的毛细血管式服务网络(5800名村级站长覆盖220万亩耕地)、科技金融双引擎(自研中和金服APP与乡助农技平台)及生态化服务闭环,累计服务480万农户,覆盖23省550县域。
- 计算机英语上 期末 复习(广外软工)
记忆中的你问我
学习经验分享课程设计笔记其他
前言广外21级软件工程计算机英语期末复习,考试据说只考前10页的内容期末考试题型:1.名词解释2.翻译(如果有翻译错误/小道消息/未补充的知识点请评论,祝大家期末科科4.0!)Chapter01.名词解释computerscienceItisthedisciplinethatseekstobuildascientificfoundationforsuchtopicsascomputerdesign
- 阿里一面凉经
一入JAVA毁终身
面试记录面试
阿里一面(凉经)先说明我大二开始接触计算机学习总共不到两年,很菜加上我比较容易紧张,所以回答的有些不尽人意,事后反思了一下确实很多地方是有问题的,大家如果看出什么问题请告知我一下,我一定虚心接受。1.主体的流程自我介绍(不过多赘述了)挑选一个项目进行深入探讨八股拷打算法2.项目拷打在自我介绍里我大概介绍了一下我的三个项目,相比字节的面试官明显流程更加固定,而且也更正式,不会会和你多聊一些学习方面的
- 2025年上半年软考系统架构设计师--案例分析试题与答案
不对法
计算机软考机考系统架构
必选题一:大模型训练系统某公司开发一个在线大模型训练平台,支持Python代码编写、模型训练和部署,用户通过python编写模型代码,将代码交给系统进行模型代码的解析,最终由系统匹配相应的计算机资源进行输出,用户不需要关心底层硬件平台。a.系统发生错误时,不影响正常运行时发送一个消息给系统管理员(可靠性。ps:可靠性中包括了健壮性:指的是保护应用程序不受错误使用和错误输入的影响,在发生意外错误事件
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- Python+Vue计算机毕业设计智慧养老院管理系统egn81(源码+程序+LW+部署)
心心毕设程序源码
pythonvue.js课程设计
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程项目运行环境配置:Python3.7.7+Django+Mysql5.7+piplist+HBuilderX(Vscode也行)+Vue+Pychram社区版。项目技术:Django+Vue+Python+Mysql等等组成,B/S模式等等。环境需要1.运行环境:最好是安装Python3.7.7,我们在这个平台上运行的。其他版本理论上也
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- Rust Web 后端开发实战:Actix + Diesel 构建高性能 API
忘掉我的模样
Java全栈面试指南RustActixDieselPostgreSQLRESTfulAPIWeb开发后端开发
RustWeb后端开发实战:Actix+Diesel构建高性能API\n\n《一条龙开发指南:MCPAIAgent理论+项目实战开发你的MCPServer》\n\n##面试人物设定\n\n-姓名:李明哲\n-年龄:32岁\n-学历:计算机博士\n-工作年限:8年\n-公司背景:某头部区块链平台\n-技术栈:Rust,Actix,Diesel,PostgreSQL\n-核心职责:\n-使用Rust
- KAN-Transfomer——基于新型神经网络KAN的时间序列预测
MatpyMaster
时间序列付费专栏神经网络人工智能深度学习
1.数据集介绍ETT(电变压器温度):由两个小时级数据集(ETTh)和两个15分钟级数据集(ETTm)组成。它们中的每一个都包含2016年7月至2018年7月的七种石油和电力变压器的负载特征。traffic(交通):描述了道路占用率。它包含2015年至2016年旧金山高速公路传感器记录的每小时数据electrity(电力):从2012年到2014年收集了321个客户每小时电力消耗。exchange
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro