在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。
譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;而在距离类模型,譬如K近邻,K-Means聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好。)
数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化(Zero-centered或者Mean-subtraction)处理和缩放处理(Scale)。中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理。
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差
scaler.mean_ #查看均值的属性mean_
scaler.var_ #查看方差的属性var_
x_std = scaler.transform(data) #通过接口导出结果
x_std.mean() #导出的结果是一个数组,用mean()查看均值
x_std.std() #用std()查看方差
scaler.fit_transform(data) #使用fit_transform(data)一步达成结果
scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化
对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值,在fit的时候忽略,在transform的时候保持缺失NaN的状态显示。并且,尽管去量纲化过程不是具体的算法,但**在fit接口中,依然只允许导入至少二维数组,**一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。
机器学习和数据挖掘中所使用的数据,永远不可能是完美的。很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况。因此,数据预处理中非常重要的一项就是处理缺失值。
class sklearn.impute.SimpleImputer (missing_values=nan, strategy=’mean’,
fill_value=None, verbose=0,copy=True)
参数 | 含义&输入 |
---|---|
missing_values | 告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan |
strategy | 我们填补缺失值的策略,默认均值。 输入“mean”使用均值填补(仅对数值型特征可用) 输入“median"用中值填补(仅对数值型特征可用) 输入"most_frequent”用众数填补(对数值型和字符型特征都可用) 输入“constant"表示请参考参数“fill_value"中的值(对数值型和字符型特征都可用) |
fill_value | 随机森林分类 |
copy | 默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去。 |
完全是可以使用numpy和pandas进行处理,没有必要使用sklearn
BONUS:数据类型以及常用的统计量
根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量。大于阈值的值映射为1,而小于或等于阈值的值映射为0。默认阈值为0时,特征中所有的正值都映射到1。二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否。它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模)。
#将年龄二值化
data_2 = data.copy()
from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X)
transformer
速度会比使用pandas快6-8倍(自己试验的,不一定准确)
#将年龄二值化
from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X)
这是将连续型变量划分为分类变量的类,能够将连续型变量排序后按顺序分箱后编码。总共包含三个重要参数:
from sklearn.preprocessing import KBinsDiscretizer
X = data.iloc[:,0].values.reshape(-1,1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X) #查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel())
est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform') #查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
当数据预处理完成后,我们就要开始进行特征工程了。
在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!
一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间。技术能够让模型起飞,前提是你和业务人员一样理解数据。所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。来看完整版泰坦尼克号数据中的这些特征:
所以,特征工程的第一步是:理解业务。
当然了,在真正的数据应用领域,比如金融,医疗,电商,我们的数据不可能像泰坦尼克号数据的特征这样少,这样明显,那如果遇见极端情况,我们无法依赖对业务的理解来选择特征,该怎么办呢?
我们有四种方法可以用来选择特征:过滤法,嵌入法,包装法,和降维算法。
过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。
这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。所以无
论接下来的特征工程要做什么,都要优先消除方差为0的特征。VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。
相关连接
sklearn.feature_selection.VarianceThreshold
最近邻算法KNN,单棵决策树,支持向量机SVM,神经网络,回归算法,都需要遍历特征或升维来进行运算,所以他们本身的运算量就很大,需要的时间就很长,因此方差过滤这样的特征选择对他们来说就尤为重要。
但对于不需要遍历特征的算法,比如随机森林,它随机选取特征进行分枝,本身运算就非常快速,因此特征选择对它来说效果平平。这其实很容易理解,无论过滤法如何降低特征的数量,随机森林也只会选取固定数量的特征来建模;而最近邻算法就不同了,特征越少,距离计算的维度就越少,模型明显会随着特征的减少变得轻量。
因此,过滤法的主要对象是:需要遍历特征或升维的算法们,而过滤法的主要目的是:在维持算法表现的前提下,帮助算法们降低计算成本
思考:过滤法对随机森林无效,却对树模型有效?
从算法原理上来说,传统决策树需要遍历所有特征,计算不纯度后进行分枝,而随机森林却是随机选择特征进行计算和分枝,因此随机森林的运算更快,过滤法对随机森林无用,对决策树却有用
在sklearn中,决策树和随机森林都是随机选择特征进行分枝,但决策树在建模过程中随机抽取的特征数目却远远超过随机森林当中每棵树随机抽取的特征数目(比如说对于这个780维的数据,随机森林每棵树只会抽取10-20个特征,而决策树可能会抽取300-400个特征),因此,过滤法对随机森林无用,却对决策树有用也因此,在sklearn中,随机森林中的每棵树都比单独的一棵决策树简单得多,高维数据下的随机森林的计算比决策树快很多
对受影响的算法来说,我们可以将方差过滤的影响总结如下:
我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?答案是:每个数据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法继续削减特征数量。
方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的\特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音。
在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征。
另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后模型的表现反而降低了,那我们就不会使用方差过滤后的数据,而是使用原数据):
#======【TIME WARNING: 5 mins】======#
%matplotlib inline
import matplotlib.pyplot as plt
score = []
for i in range(390,200,-10):
X_fschi = SelectKBest(chi2, k=i).fit_transform(X_fsvar, y)
once = cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
score.append(once)
plt.plot(range(350,200,-10),score)
plt.show()
通过这条曲线,我们可以观察到,随着K值的不断增加,模型的表现不断上升,这说明,K越大越好,数据中所有的特征都是与标签相关的。但是运行这条曲线的时间同样也是非常地长,接下来我们就来介绍一种更好的选择k的方法:看p值选择k。
卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断的边界,具体我们可以这样来看:
从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值。
F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回归)两个类。其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我们会先将数据转换成服从正态分布的方式。
**F检验的本质是寻找两组数据之间的线性关系,其原假设是”数据不存在显著的线性关系“。**它返回F值和p值两个统计量。和卡方过滤一样,我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。以F检验的分类为例,我们继续在数字数据集上来进行特征选择:
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvar,y) F
pvalues_f
k = F.shape[0] - (pvalues_f > 0.05).sum()
#X_fsF = SelectKBest(f_classif, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=5).mean()
得到的结论和我们用卡方过滤得到的结论一模一样:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。
互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法。和F检验相似,它既可以做回归也可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和feature_selection.mutual_info_regression(互信息回归)。
这两个类的用法和参数都和F检验一模一样,不过互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系
互信息法不返回p值或F值类似的统计量,它返回“每个特征与目标之间的互信息量的估计”,这个估计量在[0,1]之间取值,为0则表示两个变量独立,为1则表示两个变量完全相关。以互信息分类为例的代码如下:
from sklearn.feature_selection import mutual_info_classif as MIC
result = MIC(X_fsvar,y) k = result.shape[0] - sum(result <= 0)
#X_fsmic = SelectKBest(MIC, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()
所有特征的互信息量估计都大于0,因此所有特征都与标签相关。
当然了,无论是F检验还是互信息法,大家也都可以使用学习曲线,只是使用统计量的方法会更加高效。当统计量判断已经没有特征可以删除时,无论用学习曲线如何跑,删除特征都只会降低模型的表现。当然了,如果数据量太庞大,模型太复杂,我们还是可以牺牲模型表现来提升模型速度,一切都看大家的具体需求。
基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。所有信息被总结在下表
嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。
在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。并且,由于考虑特征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤的特征)都会因为
缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版。
过滤法中使用的统计量可以使用统计知识和常识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用的权值系数却没有这样的范围可找——我们可以说,权值系数为0的特征对模型丝毫没有作用,但当大量特征都对模型有贡献且贡献不一时,我们就很难去界定一个有效的临界值。这种情况下,模型权值系数就是我们的超参数,我们或许需要学习曲线,或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。
另外,嵌入法引入了算法来挑选特征,因此其计算速度也会和应用的算法有很大的关系。如果采用计算量很大,计算缓慢的算法,嵌入法本身也会非常耗时耗力。并且,在选择完毕之后,我们还是需要自己来评估模型。
class sklearn.feature_selection.SelectFromModel (estimator, threshold=None, prefit=False, norm_order=1,
max_features=None)
SelectFromModel是一个元变换器,可以与任何在拟合后具有coef_,feature_importances_属性或参数中可选惩罚项的评估器一起使用(比如随机森林和树模型就具有属性feature_importances_,逻辑回归就带有l1和l2惩罚项,线性支持向量机也支持l2惩罚项)。
对于有feature_importances_的模型来说,若重要性低于提供的阈值参数,则认为这些特征不重要并被移除。feature_importances_的取值范围是[0,1],如果设置阈值很小,比如0.001,就可以删除那些对标签预测完全没贡献的特征。如果设置得很接近1,可能只有一两个特征能够被留下
使用惩罚项的模型的嵌入法
对于使用惩罚项的模型来说,正则化惩罚项越大,特征在模型中对应的系数就会越小。当正则化惩罚项大到一定的程度的时候,部分特征系数会变成0,当正则化惩罚项继续增大到一定程度时,所有的特征系数都会趋于0。 但是我们会发现一部分特征系数会更容易先变成0,这部分系数就是可以筛掉的。也就是说,我们选择特征系数较大的特征。另外,支持向量机和逻辑回归使用参数C来控制返回的特征矩阵的稀疏性,参数C越小,返回的特征越少。Lasso回归,用alpha参数来控制返回的特征矩阵,alpha的值越大,返回的特征越少。
包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择。但不同的是,我们往往使用一个目标函数作为黑盒来帮助我们选取特征,而不是自己输入某个评估指标或统计量的阈值。包装法在初始特征集上训练评估器,并且通过coef_属性或通过feature_importances_属性获得每个特征的重要性。然后,从当前的一组特征中修剪最不重要的特征。在修剪的集合上递归地重复该过程,直到最终到达所需数量的要选择的特征。区别于过滤法和嵌入法的一次训练解决所有问题,包装法要使用特征子集进行多次训练,因此它所需要的计算成本是最高的。
注意,在这个图中的“算法”,指的不是我们最终用来导入数据的分类或回归算法(即不是随机森林),而是专业的数据挖掘算法,即我们的目标函数。这些数据挖掘算法的核心功能就是选取最佳特征子集。
最典型的目标函数是递归特征消除法(Recursive feature elimination, 简写为RFE)。它是一种贪婪的优化算法,旨在找到性能最佳的特征子集。 它反复创建模型,并在每次迭代时保留最佳特征或剔除最差特征,下一次迭代时,
它会使用上一次建模中没有被选中的特征来构建下一个模型,直到所有特征都耗尽为止。 然后,它根据自己保留或剔除特征的顺序来对特征进行排名,最终选出一个最佳子集。包装法的效果是所有特征选择方法中最利于提升模型表现的,它可以使用很少的特征达到很优秀的效果。除此之外,在特征数目相同时,包装法和嵌入法的效果能够匹敌,不过它比嵌入法算得更见缓慢,所以也不适用于太大型的数据。相比之下,包装法是最能保证模型效果的特征选择方法。
class sklearn.feature_selection.RFE (estimator, n_features_to_select=None, step=1, verbose=0)
参数estimator是需要填写的实例化后的评估器,n_features_to_select是想要选择的特征个数,step表示每次迭代中希望移除的特征个数。除此之外,RFE类有两个很重要的属性,.support_:返回所有的特征的是否最后被选中的布尔矩阵,以及.ranking_返回特征的按数次迭代中综合重要性的排名。类feature_selection.RFECV会在交叉验证循环中执行RFE以找到最佳数量的特征,增加参数cv,其他用法都和RFE一模一样。
from sklearn.feature_selection import RFE
RFC_ = RFC(n_estimators =10,random_state=0)
selector = RFE(RFC_, n_features_to_select=340, step=50).fit(X, y)
selector.support_.sum()
selector.ranking_
X_wrapper = selector.transform(X)
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
包装法画学习曲线:
score = []
for i in range(1,751,50):
X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()
明显能够看出,在包装法下面,应用50个特征时,模型的表现就已经达到了90%以上,比嵌入法和过滤法都高效很多。我们可以放大图像,寻找模型变得非常稳定的点来画进一步的学习曲线(就像我们在嵌入法中做的那样)。如果我们此时追求的是最大化降低模型的运行时间,我们甚至可以直接选择50作为特征的数目,这是一个在缩减了94%的特征的基础上,还能保证模型表现在90%以上的特征组合,不可谓不高效。
同时,我们提到过,在特征数目相同时,包装法能够在效果上匹敌嵌入法。试试看如果我们也使用340作为特征数目,运行一下,可以感受一下包装法和嵌入法哪一个的速度更加快。由于包装法效果和嵌入法相差不多,在更小的范围内使用学习曲线,我们也可以将包装法的效果调得很好,大家可以去试试看。
经验来说,过滤法更快速,但更粗糙。包装法和嵌入法更精确,比较适合具体到算法去调整,但计算量比较大,运行时间长。当数据量很大的时候,优先使用方差过滤和互信息法调整,再上其他特征选择方法。使用逻辑回归时,优先使用嵌入法。使用支持向量机时,优先使用包装法。迷茫的时候,从过滤法走起,看具体数据具体分析。
其实特征选择只是特征工程中的第一步。真正的高手,往往使用特征创造或特征提取来寻找高级特征。在Kaggle之类的算法竞赛中,很多高分团队都是在高级特征上做文章,而这是比调参和特征选择更难的,提升算法表现的高深方法。特征工程非常深奥,虽然我们日常可能用到不多,但其实它非常美妙。若大家感兴趣,也可以自己去网上搜一搜,多读多看多试多想,技术逐渐会成为你的囊中之物。