【Python数据分析】之数据合并的concat函数与merge函数

文章目录

  • 系列文章
  • 一、concat函数
    • 1)横向堆叠与外连接
      • 横向堆叠合并df1和df2,采用==外连接==的方式
    • 2) 纵向堆叠与内链接
  • 二、merge()函数
    • 1)根据行索引合并数据
    • 2)合并重叠数据

系列文章

  1. Python之Series和DataFrame的数据排序
  2. Python数据分析之复习知识点

一、concat函数

  1. concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并
    pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=False, sort=None, copy=True)
  2. 参数含义如下:
参数 作用
axis 表示连接的轴向,可以为0或者1,默认为0
join 表示连接的方式,inner表示内连接,outer表示外连接,默认使用外连接
ignore_index 接收布尔值,默认为False。如果设置为True,则表示清除现有索引并重置索引值
keys 接收序列,表示添加最外层索引
levels 用于构建MultiIndex的特定级别(唯一值)
names 设置了keys和level参数后,用于创建分层级别的名称
verify_integerity 检查新的连接轴是否包含重复项。接收布尔值,当设置为True时,如果有重复的轴将会抛出错误,默认为False
  1. 根据轴方向的不同,可以将堆叠分成横向堆叠纵向堆叠,默认采用的是纵向堆叠方式

【Python数据分析】之数据合并的concat函数与merge函数_第1张图片

  1. 在堆叠数据时,默认采用的是外连接(join参数设为outer)的方式进行合并,当然也可以通过join=inner设置为内连接的方式。

【Python数据分析】之数据合并的concat函数与merge函数_第2张图片

1)横向堆叠与外连接

import pandas as pd
df1=pd.DataFrame({'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
df1

【Python数据分析】之数据合并的concat函数与merge函数_第3张图片

df2=pd.DataFrame({'C':['C0','C1','C2'],
                  'D':['D0','D1','D2']})
df2

【Python数据分析】之数据合并的concat函数与merge函数_第4张图片

横向堆叠合并df1和df2,采用外连接的方式

pd.concat([df1,df2],join='outer',axis=1)

【Python数据分析】之数据合并的concat函数与merge函数_第5张图片

2) 纵向堆叠与内链接

import pandas as pd
first=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2'],
                   'C':['C0','C1','C2']})
first

【Python数据分析】之数据合并的concat函数与merge函数_第6张图片

second=pd.DataFrame({'B':['B3','B4','B5'],
                   'C':['C3','C4','C5'],
                    'D':['D3','D4','D5']})
second

【Python数据分析】之数据合并的concat函数与merge函数_第7张图片

  1. 当使用concat()函数合并时,若是将axis参数的值设为0,且join参数的值设为inner,则代表着使用纵向堆叠与内连接的方式进行合并
pd.concat([first,second],join='inner',axis=0)

【Python数据分析】之数据合并的concat函数与merge函数_第8张图片

二、merge()函数

1)主键合并数据

  1. 在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,并采用内连接方式合并数据,即取行索引重叠的部分。
import pandas as pd
left=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
left

【Python数据分析】之数据合并的concat函数与merge函数_第9张图片

right=pd.DataFrame({'key':['K0','K1','K2','K3'],
                   'C':['C0','C1','C2','C3'],
                   'D':['D0','D1','D2','D3']})
right

【Python数据分析】之数据合并的concat函数与merge函数_第10张图片

pd.merge(left,right,on='key')

【Python数据分析】之数据合并的concat函数与merge函数_第11张图片

2)merge()函数还支持对含有多个重叠列的DataFrame对象进行合并。

import pandas as pd
data1=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
data1

【Python数据分析】之数据合并的concat函数与merge函数_第12张图片

data2=pd.DataFrame({'key':['K0','K5','K2','K4'],
                         'B':['B0','B1','B2','B5'],
                         'C':['C0','C1','C2','C3'],
                         'D':['D0','D1','D2','D3']})
data2

【Python数据分析】之数据合并的concat函数与merge函数_第13张图片

pd.merge(data1,data2,on=['key','B'])

【Python数据分析】之数据合并的concat函数与merge函数_第14张图片

1)根据行索引合并数据

  1. join()方法能够通过索引或指定列来连接多个DataFrame对象
  2. join(other,on = None,how =‘left’,lsuffix =‘’,rsuffix =‘’,sort = False )
参数 作用
on 名称,用于连接列名
how 可以从{‘‘left’’ ,‘‘right’’, ‘‘outer’’, ‘‘inner’’}中任选一个,默认使用左连接的方式。
sort 根据连接键对合并的数据进行排序,默认为False
import pandas as pd
data3=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2']})
data3

【Python数据分析】之数据合并的concat函数与merge函数_第15张图片

data4=pd.DataFrame({'C': ['C0', 'C1', 'C2'],
                         'D': ['D0', 'D1', 'D2']},
                     index=['a','b','c'])
data3.join(data4,how='outer')  # 外连接

【Python数据分析】之数据合并的concat函数与merge函数_第16张图片

data3.join(data4,how='left')  #左连接

【Python数据分析】之数据合并的concat函数与merge函数_第17张图片

data3.join(data4,how='right')  #右连接

【Python数据分析】之数据合并的concat函数与merge函数_第18张图片

data3.join(data4,how='inner')  #内连接

【Python数据分析】之数据合并的concat函数与merge函数_第19张图片

import pandas as pd
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2'],
                      'key': ['K0', 'K1', 'K2']})
left

【Python数据分析】之数据合并的concat函数与merge函数_第20张图片

right = pd.DataFrame({'C': ['C0', 'C1','C2'],
                         'D': ['D0', 'D1','D2']},
                        index=['K0', 'K1','K2'])
right

【Python数据分析】之数据合并的concat函数与merge函数_第21张图片
on参数指定连接的列名

left.join(right,how='left',on='key')  #on参数指定连接的列名

【Python数据分析】之数据合并的concat函数与merge函数_第22张图片

2)合并重叠数据

当DataFrame对象中出现了缺失数据,而我们希望使用其他DataFrame对象中的数据填充缺失数据,则可以通过combine_first()方法为缺失数据填充。

import pandas as pd
import numpy as np
from numpy import NAN
left = pd.DataFrame({'A': [np.nan, 'A1', 'A2', 'A3'],
                        'B': [np.nan, 'B1', np.nan, 'B3'],
                        'key': ['K0', 'K1', 'K2', 'K3']})
left

【Python数据分析】之数据合并的concat函数与merge函数_第23张图片

right = pd.DataFrame({'A': ['C0', 'C1','C2'],
                         'B': ['D0', 'D1','D2']},
                         index=[1,0,2])
right

【Python数据分析】之数据合并的concat函数与merge函数_第24张图片
用right的数据填充left缺失的部分

left.combine_first(right) # 用right的数据填充left缺失的部分

【Python数据分析】之数据合并的concat函数与merge函数_第25张图片
【Python数据分析】之数据合并的concat函数与merge函数_第26张图片

你可能感兴趣的:(数据分析学习,python,数据分析,jupyter,数据挖掘)