模拟退火算法求解TSP问题(python)

TSP旅行商问题

旅行商问题大家都应该非常熟悉了,解法也很多,比如贪婪算法、Dijkstra算法等等,本文参考《MATLAB智能算法30个案例分析(第2版)》中第19章的内容,利用模拟退火算法求解TSP问题并给出了python实现版本
TSP问题描述如下:
模拟退火算法求解TSP问题(python)_第1张图片

TSP模拟退火算法

关于模拟退火算法的原理,书籍和文章均比较多,这里就不再赘述,大家可以参考其他博文,或阅读《MATLAB智能算法30个案例分析(第2版)》这本书。

程序及运行结果(笔者python环境为3.7)

import copy
import math
import random
import matplotlib.pyplot as plt

# 初始温度
T0 = 1000
# 终止温度
Tend = 1e-3
# 个温度下的迭代次数(链长)
L = 200
# 降温速率
q = 0.9

# 各个城市的坐标
X = [(16.4700, 96.1000),
     (16.4700, 94.4400),
     (20.0900, 92.5400),
     (22.3900, 93.3700),
     (25.2300, 97.2400),
     (22.0000, 96.0500),
     (20.4700, 97.0200),
     (17.2000, 96.2900),
     (16.3000, 97.3800),
     (14.0500, 98.1200),
     (16.5300, 97.3800),
     (21.5200, 95.5900),
     (19.4100, 97.1300),
     (20.0900, 92.5500)]


# 构建距离矩阵
def build_distance():
    # 初始化城市距离矩阵
    distance = [[0 for _ in range(len(X))] for _ in range(len(X))]
    # 计算各个城市之间的距离
    for i in range(len(X)):
        pos1 = X[i]
        for j in range(i+1, len(X)):
            pos2 = X[j]
            distance[i][j] = pow((pow(pos1[0] - pos2[0], 2) + pow(pos1[1] - pos2[1], 2)), 0.5)
            distance[j][i] = distance[i][j]
    return distance


# 产生新的路径解
def gen_new_path(path):
    new_path = copy.copy(path)
    # 随机产生两个索引
    idx1 = random.randint(0, len(path) - 1)
    idx2 = random.randint(0, len(path) - 1)
    # 交换路径中的两个城市
    temp = new_path[idx1]
    new_path[idx1] = new_path[idx2]
    new_path[idx2] = temp
    return new_path


# 计算路径总距离
def path_distance(path, distance):
    total_distance = 0.0
    # 循环路径上所有城市进行计算,到最后一个城市返回出发城市
    for i in range(len(path)):
        if i == len(path) - 1:
            total_distance += distance[path[i]][path[0]]
        else:
            total_distance += distance[path[i]][path[i + 1]]
    return total_distance


# Metropolis准则函数
def metropolis(old_path, new_path, distance, t):
    # 路径的能量即路径上各城市距离之和
    # 新路径的能量函数和旧路径的能量函数之差
    delta = path_distance(new_path, distance) - path_distance(old_path, distance)
    # 若新路径能量低于旧路径,则接受新路径解
    if delta < 0:
        return copy.copy(new_path), path_distance(new_path, distance)
    # 若新路径能量高于旧路径,则按exp(-delta/t)概率接受新路径解
    if math.exp(-delta/t) >= random.uniform(0, 1):
        return copy.copy(new_path), path_distance(new_path, distance)
    # 不接受新路径解
    return copy.copy(old_path), path_distance(old_path, distance)


# 绘制结果
def draw_result(best, file_name="tsp_sa"):
    # 各个城市的横纵坐标
    x = [pos[0] for pos in X]
    y = [pos[1] for pos in X]
    # 绘图中文设置
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus'] = False
    # 清空画布
    plt.clf()
    # 绘制箭头
    for i in range(len(X)):
        # 箭头开始坐标
        start = X[best[i]]
        # 箭头结束坐标
        end = X[best[i + 1]] if i < len(best) - 1 else X[best[0]]
        plt.arrow(start[0], start[1], end[0] - start[0], end[1] - start[1], head_width=0.2, lw=1, length_includes_head=True)
    # 绘制城市编号
    for i in range(len(X)):
        plt.text(x[best[i]], y[best[i]], "{}".format((best[i] + 1)), size=15, color="r")
    plt.xlabel(u"横坐标")
    plt.ylabel(u"纵坐标")
    plt.savefig(file_name + ".png", dpi=800)


# 绘制进化过程
def draw_evolution(evolution):
    x = [i for i in range(len(evolution))]
    # 清空画布
    plt.clf()
    plt.plot(x, evolution)
    plt.savefig('tsp_sa_evolution.png', dpi=800)


# 模拟退火算法
def simulated_annealing():
    # 城市距离矩阵
    distance = build_distance()
    # 城市个数
    city_cnt = len(distance)
    # 初始化城市路径,这里可以随机生成,也可以跟书中的初始路径保持一致
    # path = random.sample(range(0, city_cnt), city_cnt)
    path = [10, 13, 2, 8, 5, 3, 12, 6, 7, 0, 11, 4, 1, 9]
    # 绘制初始路径
    draw_result(path, "init_path")
    # 初始路线长度
    total_distance = path_distance(path, distance)

    print("初始路线:", [p + 1 for p in path])
    print("初始总距离:", total_distance)
    # 温度
    t = T0
    # 进化过程,每一次迭代的路径总距离
    evolution = []
    # 循环直到冷却后停止
    while t > Tend:
        for _ in range(L):
            # 产生新路径
            new_path = gen_new_path(path)
            # 更新最佳路径及对应的距离
            path, total_distance = metropolis(path, new_path, distance, t)
            # 更新进化过程
            evolution.append(total_distance)
        # 降温
        t = t * q
    # 打印退火后信息
    print("结束温度为:", t)
    print("最佳路线:", [p + 1 for p in path])
    print("最佳距离:", total_distance)
    # 绘制最佳路径
    draw_result(path, "tsp_sa_best")
    # 绘制进化过程
    draw_evolution(evolution)


if __name__ == "__main__":
    simulated_annealing()

程序打印信息如下:

初始路线: [11, 14, 3, 9, 6, 4, 13, 7, 8, 1, 12, 5, 2, 10]
初始总距离: 56.0122140089359
结束温度为: 0.0009120344560464498
最佳路线: [14, 2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3]
最佳距离: 29.340520066994227

运行结果下图所示:
模拟退火算法求解TSP问题(python)_第2张图片

路径总距离随着迭代的进行逐步稳定,如下图所示:
模拟退火算法求解TSP问题(python)_第3张图片

笔者水平有限,若有不对的地方欢迎评论指正

你可能感兴趣的:(智能优化算法,python,模拟退火算法,算法)