树莓派3b+实现人脸识别

1)人脸检测和数据收集;
2)训练识别器;
3)人脸识别。

提前安装好cv2 python

1人脸检测

人脸识别的最基础任务是「人脸检测」。你必须首先「捕捉」人脸(第 1 阶段)才能在未来与捕捉到的新人脸对比时(第 3 阶段)识别它。

最常见的人脸检测方式是使用「Haar 级联分类器」。使用基于 Haar 特征的级联分类器的目标检测是 Paul Viola 和 Michael Jones 2001 年在论文《Rapid Object Detection using a Boosted Cascade of Simple Features》中提出的一种高效目标检测方法。这种机器学习方法基于大量正面、负面图像训练级联函数,然后用于检测其他图像中的对象。这里,我们将用它进行人脸识别。最初,该算法需要大量正类图像(人脸图像)和负类图像(不带人脸的图像)来训练分类器。然后我们需要从中提取特征。好消息是 OpenCV 具备训练器和检测器。如果你想要训练自己的对象分类器,如汽车、飞机等,你可以使用 OpenCV 创建一个。

face.py测试

import numpy as np
import cv2
 
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
 
cap = cv2.VideoCapture(0)
cap.set(3,640) # set Width
cap.set(4,480) # set Height
 
while True:
    ret, img = cap.read()
    img = cv2.flip(img, -

你可能感兴趣的:(单片机嵌入式开发)