- 基于vue框架的超市订单管理系统16uob(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
小光学长
数据库
系统程序文件列表项目功能:员工,商品分类,商品信息,供货商,入库订单,销售订单,货架信息,盈利信息开题报告内容基于Vue框架的超市订单管理系统开题报告一、研究背景与意义随着信息技术的飞速发展和电子商务的普及,传统超市管理模式正面临前所未有的挑战与机遇。传统的手工记录与管理方式已难以满足现代超市对高效、精准、实时管理的需求。超市订单管理系统作为超市运营的核心部分,其信息化、智能化水平直接影响到超市的
- JavaSE查漏补缺:Junit_反射_注解摘要
Kenny_Xu_00101854
Javajava反射单元测试
文章目录Part1Junit单元测试Part2反射-框架设计的灵魂Part3Java注解Part1Junit单元测试测试分类黑盒测试:不需要写代码,给输入值,看程序能否输出期望的值白盒测试:需要写代码,关注程序具体的执行流程Junit的使用(白盒测试)步骤:定义一个测试类(测试用例)规范:测试类名是被测试类名+Test包名:xxx.xxx.xx.test定义测试方法:可独立运行规范:方法名:tes
- android-性能分析
以下是Android性能分析的完整指南,涵盖核心工具、优化方向及实操方法,适用于2025年开发环境:⚙️一、性能分析工具分类1.官方工具链工具用途关键能力版本适配AndroidProfiler实时监测CPU/内存/网络/能耗火焰图分析、内存泄漏检测(支持Activity/Fragment自动检测)AndroidStudio3.6+Perfetto系统级追踪(替代Systrace)线程调度、GPU渲
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- 学习笔记-JVM GC
绝不秃头的L君
学习笔记jvmjvm.gc
1.GC分类PartialGC并不会收集整个堆空间,仅仅包括新生代和老年代,不包含永久代(元空间)。YoungGC:只收集YoungGen的垃圾收集过程。OldGC:只收集OldGen的垃圾收集过程。(只有CMS的并发收集是这个模式)MixedGC:收集整个YoungGen以及部分OldGen的垃圾收集过程。(只有G1有这个模式)FullGC收集整个堆,包括YoungGen、OldGen以及Per
- Web 服务器架构选择深度解析
后端
在Web服务与API设计中,服务器架构的选择直接决定系统的可扩展性、维护成本与性能上限。本文从架构演进脉络出发,系统解析单体架构、微服务、服务网格、Serverless等主流架构的核心特性、适用场景及Java技术栈实现。一、架构演进与核心分类1.1架构演进脉络1.2核心架构对比表架构类型核心特点典型技术栈(Java)部署复杂度扩展性单体架构所有功能模块打包为单一应用,共享数据库SpringBoot
- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- Redis 详细介绍
骑牛小道士
redis数据库缓存
RedisRedis是什么为什么要用RedisRedis的持久化Redis数据共享分布式Redis缓存的安全性保证(分布式锁)Redis的部署模式分类Redis的全局IDRedisTemplate常用方法Redis的应用Redis在消息队列中应用方式一:基于List的队列方式二:Redis发布/订阅(Pub/Sub)模式Redis发布消息Redis订阅消息(配置监听器)方式三:基于Streams的
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- CHES2024 issue-1文章总结
打工小熊猫
密码学文献分类总结arm开发同态加密零知识证明密码学网络攻击模型安全威胁分析计算机网络
来源:https://ches.iacr.org/2024/acceptedpapers.php简要分类:分类文章编号后量子密码软硬件加速相关无侧信道攻防相关1、10、11、12、14、15同态相关18、19、201.Gadget-basedMaskingofStreamlinedNTRUPrimeDecapsulationinHardwareGeorgLand,AdrianMarotzke,Ja
- Linux——内核——设备驱动
newbie_Joe
linux概念linux内核
Linux设备驱动是操作系统与硬件之间的桥梁,它允许内核与硬件设备进行通信,管理硬件资源,并为上层应用提供标准化的接口。以下从基本概念、分类、架构、开发流程及关键机制等方面,系统梳理Linux设备驱动的核心知识:一、设备驱动的基本概念作用抽象硬件细节:将硬件操作封装为标准接口(如open()、read()、write()),使应用无需直接操作寄存器。资源管理:分配/释放硬件资源(如内存、I/O端口
- 基于人体骨架动作识别的神经信息处理技术(2 相关工作-2.4提高信号质量)
路由跳变
动作识别人工智能
2相关工作在本节中,我们将回顾本论文的相关工作。我们根据文献的功能将文献分为四类,包括1)数据集,2)提取空间特征,3)捕获时间模式,4)提高信号质量。对于每个组件,我们将其进一步分解为细分区域。最后,我们展示了现有方法在不同数据集上的SOTA改进。总之,该分类法如下:1)数据集2)提取空间特征利用拓扑结构、设计空间操作符、分离通道功能、学习参数化拓扑、分区层次结构。3)捕获时间模式提取多尺度特征
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 从数据抓取到智能分类:用 LangChain + 爬虫构建自动化工作流的实战笔记
大模型之路
大模型(LLM)人工智能langchain
一、从人工到自动化的迫切需求在数字化时代,信息的快速获取与处理成为个人和组织高效运转的关键。然而,许多重复性强、耗时长且缺乏创造性的任务,如定期收集和整理网络信息并制作成特定格式的内容,依然占据着人们大量的时间和精力。本文作者就面临这样的困境:每两周需花费数小时访问多个大学网站,提取活动信息,手动将其整理成繁琐的HTML表格,并确保在Outlook中格式正确无误。这一过程不仅涉及大量枯燥的重复劳动
- DeepSeek 大模型:工单系统优化与企业提效关键
合力亿捷-小亿
人工智能
随着信息化时代的到来,企业对运营效率的需求日益增强,工单系统作为重要的运营管理工具,其优化程度直接影响到企业的响应速度与服务质量。DeepSeek大模型通过强大的数据处理能力,为工单系统提供了多维度的优化方案,从分类、派发到内容填充、优先级排序,再到知识管理,全面提升了工单处理的智能化与自动化水平,帮助企业在提升客户满意度的同时,也实现了自身运营效率的跃升。一、工单分类与派发1.精准分类工单分类是
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 基于 WebGL 与 GIS 的智慧垃圾分类三维可视化技术方案
图扑可视化
数字孪生三维可视化垃圾分类智慧环卫
图扑自主研发的HT可视化引擎,基于HTML5的WebGL与Canvas技术构建,形成了完整的2D/3D图形渲染体系。该引擎无需依赖第三方插件,通过纯JavaScript脚本调用API,即可实现跨平台的可视化交互体验,支持PC端、移动端及大屏终端的多屏协同。在三维渲染技术层面,引擎深度集成WebGL底层图形接口,构建了高效的轻量化处理体系。HT还支持3DTiles格式航拍倾斜摄影实景数据、城市建筑群
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- python 内置函数大全及完整使用示例
慧一居士
Pythonpython
Python内置函数是预先定义好的高效工具,涵盖数学运算、类型转换、序列操作等多个领域。以下是常见内置函数的分类大全及使用示例:一、数学运算函数abs(x)返回数值的绝对值,支持整数、浮点数和复数[1][2][4]。abs(-10)#输出10abs(-3.5)#输出3.5abs(3+4j)#输出5.0divmod(a,b)返回商和余数的元组,等价于(a//b,a%b)[2][4]。divmod(9
- Linux 系统中常用的文件和文件夹管理命令 and 常用快捷键
高山莫衣
gitlinux运维服务器
以下是Linux系统中常用的文件和文件夹管理命令,分类整理便于快速查阅:目录操作命令作用示例pwd显示当前工作目录pwdcd切换目录cd/var/wwwmkdir创建目录mkdirnew_foldermkdir-p递归创建多级目录mkdir-pa/b/crmdir删除空目录rmdirempty_dirtree树状显示目录结构tree-L2(显示2层深度)文件操作命令作用示例ls列出目录内容ls-l
- EN 13501标准介绍
独二.
布线安全防火网络大数据信息与通信
1.什么是EN13501?EN13501是欧洲防火标准(Euroclass),用于对建筑材料的防火性能进行分类。该标准适用于电缆、建筑板材、隔热材料、地板、天花板等,广泛应用于建筑行业、电缆布线、数据中心、智能楼宇以及其他需要防火安全的领域。EN13501-1是该系列标准中专门针对建筑产品的防火性能分类标准,其中EN13501-6主要用于电缆的防火性能评估。2.EN13501-1防火分类体系EN1
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- Python 爬虫实战:爬取掘金平台文章(列表解析 + 技术领域分类统计)
Python核芯
Python爬虫实战项目python爬虫开发语言
摘要:掘金平台汇聚了大量优质的编程技术和行业资讯文章。本文将深入讲解如何利用Python爬虫抓取掘金平台文章数据,解析文章列表信息,并进行技术领域分类统计,助力开发者了解技术热点和内容分布。一、引言掘金平台作为技术分享社区,专注于数字创业、编程技术和产品设计等领域。平台上的文章由开发者、创业者和设计者撰写,涵盖了从入门教程到前沿技术解析的丰富内容。通过爬取和分析这些文章数据,可以洞察当前技术领域的
- Vibe Coding开发微信小程序实战案例
程序员陆通
微信小程序notepad++小程序AI编程
在AI编程时代,人人都能编程。我以"个人记账助手"小程序为例,详细演示整个开发过程。项目概述项目名称:个人记账助手功能描述:用户可以记录日常收支,查看统计图表,管理账单分类技术栈:微信小程序原生开发+云开发开发方式:VibeCoding+AI辅助第一阶段:需求分析与架构设计与AI对话进行需求梳理开发者描述:我想开发一个微信小程序,功能是个人记账。用户可以:1.添加收入和支出记录2.选择消费分类(餐
- pytorch官方文档60分钟入门笔记
xiaodidadada
机器学习
文章目录1.张量(Tensors)定义张量张量操作2.自动求导(autograd)变量Variable3.神经网络4.训练一个分类器载入数据5.数据并行day63参考:官方文档https://blog.csdn.net/u014630987/article/details/786690511.张量(Tensors)tensors和numpy的ndarray类似,但是tensors可以使用GPU加快
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- 基于PLC的智能楼宇控制系统设计(源码+万字报告+部署讲解等)
炳烛之明科技
PLC
目录摘要2第一章绪论51.1引言51.2智能楼宇的课题背景51.3智能楼宇的功能和优势6第二章智能楼宇系统总体方案确定72.1智能楼宇系统总体方案的设计72.1.1智能楼宇概述72.1.2智能楼宇的分类71、建筑设备自动化系统(BA)72、通讯自动化系统(CA)73、办公自动化系统(OA)74、火灾报警于消防联动自动化系统(FA)85、安全保卫自动化系统(SA)82.1.2总体控制方案的设计82.
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,