There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2 0 2 2 2 1 1 1 0 6 6 6 1 1 1
Sample Output
1.142857142857143 1.004651162790698
Author: CAO, Peng
Source: The 7th Zhejiang Provincial Collegiate Programming Contest
本题通过代换系数,化简后求系数。
一般形成环的用高斯消元法求解。但是此题都是和dp[0]相关。所有可以分离出系数。
/* ZOJ 3329 题意:有三个骰子,分别有k1,k2,k3个面。 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。 当分数大于n时结束。求游戏的期望步数。初始分数为0 设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率 则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1; 都和dp[0]有关系,而且dp[0]就是我们所求,为常数 设dp[i]=A[i]*dp[0]+B[i]; 代入上述方程右边得到: dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1 =(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1; 明显A[i]=(∑(pk*A[i+k])+p0) B[i]=∑(pk*B[i+k])+1 先递推求得A[0]和B[0]. 那么 dp[0]=B[0]/(1-A[0]); */ #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; double A[600],B[600]; double p[100]; int main() { int T; int k1,k2,k3,a,b,c; int n; scanf("%d",&T); while(T--) { scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c); double p0=1.0/k1/k2/k3; memset(p,0,sizeof(p)); for(int i=1;i<=k1;i++) for(int j=1;j<=k2;j++) for(int k=1;k<=k3;k++) if(i!=a||j!=b||k!=c) p[i+j+k]+=p0; memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); for(int i=n;i>=0;i--) { A[i]=p0;B[i]=1; for(int j=1;j<=k1+k2+k3;j++) { A[i]+=A[i+j]*p[j]; B[i]+=B[i+j]*p[j]; } } printf("%.16lf\n",B[0]/(1-A[0])); } return 0; }