- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- 形象理解线性代数的本质(三) 矩阵的升维和降维
_躬行_
线性代数机器学习基础矩阵线性代数
引子:降维打击科幻小说《三体》里一种很魔幻的攻击方法——降维打击,以其神奇的作用方式和巨大的威力刷新了我们的三观。而在矩阵乘法计算中,这种降维打击时刻存在着。本节讲解一下矩阵乘法中造成的升维和降维。一、矩阵的降维还用游戏的例子,有4个角色,每个人都有不同的能力,将其用矩阵表示出来现在我们要评估他们的两种能力:领兵打仗的能力和协同将领的能力只要将两个矩阵相乘,就能根据方法X对象的法则评估出他们这两种
- 使用 Math.NET 进行数值计算的指南
墨瑾轩
一起学学C#【一】.net决策树算法
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣使用Math.NET进行数值计算的指南️♂️数值计算的魅力:从基础到进阶引言在科学计算、工程设计甚至是金融分析等领域,数值计算都是不可或缺的一环。Math.NETNumerics作为.NET平台上的一款强大而全面的数值计算库,提供了包括线性代数、概率统计、信
- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- 机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
- 图像处理与机器视觉
Be_auto
图像处理计算机视觉
1.图像处理与机器视觉的概念图像处理(ImageProcessing)是对图像进行分析、增强、变换等操作以改善图像质量或提取有用信息的过程。它通常涉及数字图像处理技术,包括滤波、边缘检测、图像分割、特征提取等。图像处理的目标可以是增强图像的视觉效果,或者使图像更适合于某种特定的机器分析。详细解释图文处理,就像是给照片和文档“化妆”和“打扮”一样。它可不是简单的涂抹或者穿衣搭配,而是需要掌握一系列“
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- 7.2 奇异值分解的基与矩阵
passxgx
#第7章奇异值分解(SVD)矩阵线性代数
一、奇异值分解奇异值分解(SVD)是线性代数的高光时刻。AAA是一个m×nm\timesnm×n的矩阵,可以是方阵或者长方形矩阵,秩为rrr。我们要对角化AAA,但并不是把它化成X−1AXX^{-1}AXX−1AX的形式。这是因为XXX中的特征向量有三个大问题:它们通常并不正交,并不总是有足够数量的特征向量,并且Ax=λxA\boldsymbolx=\lambda\boldsymbolxAx=λx
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- 10.【线性代数】—— 四个基本子空间
sda42342342423
math线性代数基本子空间
十、四个基本子空间1.列空间C(A)C(A)C(A)inRmR^mRm2.零空间N(A)N(A)N(A)inRnR^nRn3.行空间C(AT)C(A^T)C(AT)inRnR^nRn4.左零空间N(AT)N(A^T)N(AT)inRmR^mRm综述5.新的向量空间讨论矩阵Am∗nA_{m*n}Am∗n的四个基本空间,m行n列1.列空间C(A)C(A)C(A)inRmR^mRm[col11col21
- 12.【线性代数】——图和网络
sda42342342423
math线性代数
十二图和网络(线性代数的应用)图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}1.关联矩阵2.AAA矩阵的零空间,求解Ax=0Ax=0Ax=0电势3.ATA^TAT矩阵的零空间,电流总结电流图结论图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}13245n
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 目标检测YOLO实战应用案例100讲-TDI线阵相机
林聪木
数码相机计算机视觉人工智能
目录知识储备图像基础知识分辨率单位及换算算法原理一、TDI基本原理二、信噪比提升机制三、时间同步机制四、TDIvs传统线扫描技术五、TDI的技术挑战六、最新的TDI技术发展知识储备图像基础知识首先什么是机器视觉?计算机视觉就是让计算机去理解获取数字图像与视频中的信息。最终实现一个与人类视觉系统实现相同功能的自动化系统。什么是机器视觉中的图像的前置知识——颜色模型?最为常用的颜色模型,分别是RGB颜
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- python中的numpy库有什么优缺点_python中关于numpy库的介绍
weixin_34938347
1.Numpy是什么?NumPy(NumericalPython的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深
- 物理竞赛中的线性代数
yh2021SYXMZ
线性代数
线性代数1行列式1.1nnn阶行列式定义1.1.1:称以下的式子为一个nnn阶行列式:∣A∣=∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann∣\begin{vmatrix}\mathbfA\end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&
- 费曼学习法11 - NumPy 的 “线性代数” 之力:矩阵运算与应用 (应用篇)
修昔底德
Python费曼学习法线性代数学习numpypython人工智能深度学习
第六篇:NumPy的“线性代数”之力:矩阵运算与应用(应用篇)开篇提问:考虑一个实际问题:图像的旋转。当你使用图像编辑软件旋转照片时,背后是什么在驱动图像像素的精确移动?答案是线性代数。图像可以表示为数值矩阵,而旋转、缩放、剪切等图像变换,都可以通过矩阵运算来实现。线性代数不仅是图像处理的基石,也在机器学习、物理模拟、工程计算等众多领域扮演着核心角色。它提供了一套强大的数学工具,用于描述和解决多维
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- deepseek 麻将牌的记忆
反转
游戏人工智能
学过记忆宫殿的都知道,需要把数字图像化,然后对于麻将的话,其实也是一样,用别称,这样能更精准的记住,所以结合deepseek强大的搜索能力,我需要探索出一个更快的记忆麻将的方法,如我们有时手上有4对需要碰,怎么样能记住而不漏碰了,这很关键。下面是deepseek总结以及个人百度综合选出的最合适的。一、万子牌(1-9万)别称一萬:单眼皮二萬:双眼皮三萬:抬头纹四萬:大龅牙五
- Ubuntu 20.04下配置VSCode以支持Eigen库开发
JANGHIGH
VSCodeubuntuvscodelinux
这里写目录标题1.安装Eigen库2.配置VSCode的C++开发环境3.配置`c_cpp_properties.json`4.编写代码并测试5.配置`tasks.json`(可选)6.运行程序总结在VSCode中配置Eigen库(用于线性代数、矩阵和向量运算的C++库)的步骤如下:1.安装Eigen库在Ubuntu20.04上,可以通过以下命令安装Eigen库:sudoaptupdatesudo
- 规控算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
规控算法工程师技术图谱与学习路径规控算法工程师(规划与控制算法工程师)是自动驾驶领域的核心岗位之一,涉及路径规划、行为决策、运动控制等多个技术模块。以下为技术图谱与学习路径的整合,结合行业需求和技术发展趋势。一、技术图谱核心模块数学基础线性代数:矩阵运算、向量空间、特征值分解(用于控制系统建模与优化)。微积分:梯度下降、泰勒展开、动态系统建模(支持控制算法推导)。概率论与统计学:贝叶斯理论、马尔可
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方