python np array归一化_浅谈利用numpy对矩阵进行归一化处理的方法

浅谈利用numpy对矩阵进行归一化处理的方法

本文不讲归一化原理,只介绍实现(事实上看了代码就会懂原理),代码如下:

def Normalize(data):

m = np.mean(data)

mx = max(data)

mn = min(data)

return [(float(i) - m) / (mx - mn) for i in data]

代码只有5行并不复杂,但是需要注意的一点是一定要将计算的均值以及矩阵的最大、最小值存为变量放到循环里,如果直接在循环里计算对应的值会造成归一化特别慢,笔者之前有过深切的酸爽体验….

以上这篇浅谈利用numpy对矩阵进行归一化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2018-07-11

6b5aa0751a6f1e6a9d0b665a02cc1f46.gif

本文实例讲述了Python数据预处理之数据规范化.分享给大家供大家参考,具体如下: 数据规范化 为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析. 数据规范化方法主要有: - 最小-最大规范化 - 零-均值规范化 数据示例 代码实现 #-*- coding: utf-8 -*- #数据规范化 import pandas as pd import numpy as np datafile = 'normali

多数情况下,需要对数据集进行归一化处理,再对数据进行分析 #首先,引入两个库 ,numpy,sklearn from sklearn.preprocessing import MinMaxScaler import numpy as np #将csv文件导入矩阵当中 my_matrix = np.loadtxt(open("xxxx.csv"),delimiter=",",skiprows=0) #将数据集进行归一化处理 scaler = MinMaxScaler(

1.什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法.如:1,2,3.,那归一化后就是:0,0.5,1 2.归一化步骤: 如:2,4,6 (1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值 min = 2: max = 6: r = max - min = 4 (2)数组中每个数都减去最小值 2,4,6 变成 0,2,4 (3)再除去差值r 0,2,4 变成 0,0.5,1 就得出归一化后的数组了 3.用python 把一个矩阵中

数据归一化: 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权. 为什么要做归一化: 1)加快梯度下降求最优解的速度 如果两个特征的区间相差非常大,其所形成的等高线非常尖,很有可能走"之字型"路线(垂直等高线走),从而导致需要迭代很多次才能收敛. 2)有可能提高精度 一些分类器需要计算样本之间的距离,如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时

如下所示: import numpy as np Z=np.random.random((5,5)) Zmax,Zmin=Z.max(axis=0),Z.min(axis=0) Z=(Z-Zmin)/(Zmax-Zmin) print(Z) 以上这篇python numpy 按行归一化的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

python 统计代码行数简单实例 送测的时候,发现需要统计代码行数 于是写了个小程序统计自己的代码的行数. #calclate_code_lines.py import os def afileline(f_path): res = 0 f = open(f_path) for lines in f: if lines.split(): res += 1 return res if __name__=='__main__': host = 'E:'+os.sep+'develop'+os.s

一.前言 本文主要使用python 的raw_input() 函数读入多行不定长的数据,输入结束的标志就是不输入数字情况下直接回车,并填充特定的数作为二维矩阵 二.代码 def get2DlistData(): res = [] inputLine = raw_input() #以字符串的形式读入一行 #如果不为空字符串作后续读入 while inputLine != '': listLine = inputLine.split(' ') #以空格划分就是序列的形式了 listLine = [i

废话不多说,直接上代码,有详细注释 # coding = utf-8 import numpy as np from IPython import embed # xy 输入,可支持浮点数操作 速度很快哦 # return xy 去重后结果 def duplicate_removal(xy): if xy.shape[0] < 2: return xy _tmp = (xy*4000).astype('i4') # 转换成 i4 处理 _tmp = _tmp[:,0] + _tmp[:,1]*1

如下所示: >>> import numpy as np >>> a = np.array([[1, 2, 3], [3, 1, 2]]) >>> b = np.array([[5, 2, 6], [5, 1, 2]]) >>> a array([[1, 2, 3], [3, 1, 2]]) >>> b array([[5, 2, 6], [5, 1, 2]]) >>> c = a + b >

问题描述: 给定一个二维数组,求每一行的最大值 返回一个列向量 如: 给定数组[1,2,3:4,5,3] 返回[3:5] import numpy as np x = np.array([[1,2,3],[4,5,3]]) # 先求每行最大值得下标 index_max = np.argmax(x, axis=1)# 其中,axis=1表示按行计算 print(index_max.shape) max = x[range(x.shape[0]), index_max] print(max) # 注

计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下: import numpy dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2))) 或者直接: dist = numpy.linalg.norm(vec1 - vec2) 补充知识:Python中计算两个数据点之间的欧式距离,一个点到数据集中其他点的距离之和 如下所示: 计算数两个数据点之间的欧式距离 import numpy as

前言: 这篇文章给大家介绍了怎样用python创建一个简单的报警,它可以运行在命令行终端,它需要分钟做为命令行参数,在这个分钟后会打印"wake-up"消息,并响铃报警,你可以用0分钟来测试,它会立即执行,用扬声器控制面板调整声音. 以下是脚本: # alarm_clock.py # Description: A simple Python program to make the computer act # like an alarm clock. Start it running

若干个数组可以沿不同的轴合合并到一起,vstack,hstack的简单用法, >>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vs

每次要显示图像阵列的时候,使用自带的 matplotlib 或者cv2 都要设置一大堆东西,subplot,fig等等,突然想起 可以利用numpy 的htstack() 和 vstack() 将图片对接起来组成一张新的图片.因此写了写了下面的函数.做了部分注释,一些比较绕的地方可以自行体会. 大致流程包括: 1.输入图像列表 img_list 2.show_type : 最终的显示方式,输入为行数列数 (例如 show_type=22 ,则最终显示图片为两行两列) 3.basic_shape,

你可能感兴趣的:(python,np,array归一化)