前言:
多线程简单理解就是:一个CPU,也就是单核,将时间切成一片一片的,CPU轮转着去处理一件一件的事情,到了规定的时间片就处理下一件事情。
1.python中显示当前线程信息的属性和方法
# coding:utf-8 # 导入threading包 import threading if __name__ == "__main__": print("当前活跃线程的数量", threading.active_count()) print("将当前所有线程的具体信息展示出来", threading.enumerate()) print("当前的线程的信息展示", threading.current_thread())
效果图:
2.添加一个线程
# coding:utf-8 import threading import time def job1(): # 让这个线程多执行几秒 time.sleep(5) print("the number of T1 is %s" % threading.current_thread()) if __name__ == "__main__": # 创建一个新的线程 new_thread = threading.Thread(target=job1, name="T1") # 启动新线程 new_thread.start() print("当前线程数量为", threading.active_count()) print("所有线程的具体信息", threading.enumerate()) print("当前线程具体信息", threading.current_thread())
效果图:
3.线程中的join函数
(1)预想的是,执行完线程1,然后输出All done…“理想很丰满,现实却不是这样的”
# coding:utf-8 import threading import time def job1(): print("T1 start") for i in range(5): time.sleep(1) print(i) print("T1 finish") def main(): # 新创建一个线程 new_thread = threading.Thread(target=job1, name="T1") # 启动新线程 new_thread.start() print("All done...") if __name__ == "__main__": main()
效果图:
(2)为了达到我们的预期,我们使用join函数,将T1线程进行阻塞。join函数进行阻塞是什么意思?就是哪个线程使用了join函数,当这个线程正在执行时,在他之后的线程程序不能执行,得等这个被阻塞的线程全部执行完毕之后,方可执行!
# coding:utf-8 import threading import time def job1(): print("T1 start") for i in range(5): time.sleep(1) print(i) print("T1 finish") def main(): # 新创建一个线程 new_thread = threading.Thread(target=job1, name="T1") # 启动新线程 new_thread.start() # 阻塞这个T1线程 new_thread.join() print("All done...") if __name__ == "__main__": main()
效果图:
4.使用Queue存储线程的结果
线程的执行结果,无法通过return进行返回,使用Queue存储。
# coding:utf-8 import threading from queue import Queue """ Queue的使用 """ def job(l, q): for i in range(len(l)): l[i] = l[i] ** 2 q.put(l) def multithreading(): # 创建队列 q = Queue() # 线程列表 threads = [] # 二维列表 data = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [6, 6, 6]] for i in range(4): t = threading.Thread(target=job, args=(data[i], q)) t.start() threads.append(t) # 对所有线程进行阻塞 for thread in threads: thread.join() results = [] # 将新队列中的每个元素挨个放到结果列表中 for _ in range(4): results.append(q.get()) print(results) if __name__ == "__main__": multithreading()
效果图:
5.线程锁lock
当同时启动多个线程时,各个线程之间会互相抢占计算资源,会造成程序混乱。
举个栗子:
当我们在选课系统选课时,当前篮球课还有2个名额,我们三个人去选课。
选课顺序为stu1 stu2 stu3,应该依次打印他们三个的选课过程,但是现实情况却是:
# coding:utf-8 import threading import time def stu1(): print("stu1开始选课") global course if course > 0: course -= 1 time.sleep(2) print("stu1选课成功,现在篮球课所剩名额为%d" % course) else: time.sleep(2) print("stu1选课失败,篮球课名额为0,请选择其他课程") def stu2(): print("stu2开始选课") global course if course > 0: course -= 1 time.sleep(2) print("stu2选课成功,现在篮球课所剩名额为%d" % course) else: time.sleep(2) print("stu2选课失败,篮球课名额为0,请选择其他课程") def stu3(): print("stu3开始选课") global course if course > 0: course -= 1 time.sleep(2) print("stu3选课成功") print("篮球课所剩名额为%d" %course) else: time.sleep(2) print("stu3选课失败,篮球课名额为0,请选择其他课程") if __name__ == "__main__": # 篮球课名额 course = 2 T1 = threading.Thread(target=stu1, name="T1") T2 = threading.Thread(target=stu2, name="T2") T3 = threading.Thread(target=stu3, name="T3") T1.start() T2.start() T3.start()
效果图:
为了解决这种情况,我们使用lock线程同步锁,在线程并发执行时,保证每个线程执行的原子性。有效防止了共享统一数据时,线程并发执行的混乱。
改进的代码如下:
# coding:utf-8 import threading import time def stu1(): global lock lock.acquire() print("stu1开始选课") global course if course > 0: course -= 1 time.sleep(2) print("stu1选课成功,现在篮球课所剩名额为%d" % course) else: time.sleep(2) print("stu1选课失败,篮球课名额为0,请选择其他课程") lock.release() def stu2(): global lock lock.acquire() print("stu2开始选课") global course if course > 0: course -= 1 print("stu2选课成功,现在篮球课所剩名额为%d" % course) else: time.sleep(1) print("stu2选课失败,篮球课名额为0,请选择其他课程") lock.release() def stu3(): global lock lock.acquire() print("stu3开始选课") global course if course > 0: course -= 1 time.sleep(1) print("stu3选课成功,现在篮球课所剩名额为%d" % course) else: time.sleep(1) print("stu3选课失败,篮球课名额为0,请选择其他课程") lock.release() if __name__ == "__main__": # 篮球课名额 course = 2 # 创建同步锁 lock = threading.Lock() T1 = threading.Thread(target=stu1, name="T1") T2 = threading.Thread(target=stu2, name="T2") T3 = threading.Thread(target=stu3, name="T3") T1.start() T2.start() T3.start()
效果图:
到此这篇关于Python中的多线程实例(简单易懂)的文章就介绍到这了,更多相关Python多线程内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!