软件工程应用与实践(九):Paddle OCR文字识别器策略七

2021SC@SDUSC

目录

一、前情回顾

1.1 PP-OCR文字识别策略

1.2 本文介绍策略

二、RARE算法介绍

2.1  什么是RARE算法

2.2  RARE算法在文字识别模型中的实现

算法实现流程

RNN -> Seq2Seq

Seq2Seq -> Attention Decoder

三、RARE算法在文字识别模型中的代码实现

3.1  代码位置

3.2  关键代码

总结


一、前情回顾

1.1 PP-OCR文字识别策略

        策略的选用主要是用来增强模型能力和减少模型大小。下面是PP-OCR文字识别器所采用的九种策略:

  • 轻主干,选用采用 MobileNetV3 large x0.5 来权衡精度和效率;
  • 数据增强,BDA (Base Dataaugmented)和TIA (Luo et al. 2020);
  • 余弦学习率衰减,有效提高模型的文本识别能力;
  • 特征图辨析,适应多语言识别,进行向下采样 feature map的步幅修改;
  • 正则化参数,权值衰减避免过拟合;
  • 学习率预热,同样有效;
  • 轻头部,采用全连接层将序列特征编码为预测字符,减小模型大小;
  • 预训练模型,是在 ImageNet 这样的大数据集上训练的,可以达到更快的收敛和更好的精度;
  • PACT量化,略过 LSTM 层;

1.2 本文介绍策略

        本篇文章继续介绍OCR的轻量化策略。根据前两篇文章的描述,paddleOCR采用了CRNN结合CTC的baseline。但是同时paddle OCR也提供了除此之外的其他算法实现,并经过了测试实验(结果如下图)。包含Rosetta、STAR-Net、RARE和SRN等算法,并同时完成了在Resnet34-vd骨干和MobileNetV3骨干上的实现。

软件工程应用与实践(九):Paddle OCR文字识别器策略七_第1张图片

下图是paddle OCR识别算法分类:

软件工程应用与实践(九):Paddle OCR文字识别器策略七_第2张图片

下图是实际上paddle OCR识别算法的实现原理:

 

软件工程应用与实践(九):Paddle OCR文字识别器策略七_第3张图片

 

        通过前面的文章介绍了SRN算法和CRNN算法的实现原理,从本篇文章开始,将会介绍paddle OCR实现的Rosetta、STAR-Net、RARE算法。

        本篇文章首先介绍基于Attention的RARE文字识别算法。

二、RARE算法介绍

2.1  什么是RARE算法

        RARE(Robust text recognizer with Automatic Rectification,具有自动校正功能的鲁棒性文本识别器)是由空间变形网络(STN)和序列识别网络组成,即TPS-VGG-LSTM-Attn(Seq2seq+Attention)

       首先通过predicted Thin-Plate-Spline(TPS)对图像进行校正,为后续的序列识别网络(通过序列识别方法识别文本)生成更“可读”的图像。

2.2  RARE算法在文字识别模型中的实现

算法实现流程

        基于Attention的OCR解码算法,把OCR文字识别当成文字翻译任务,即通过Attention Decoder出文字序列。

RNN -> Seq2Seq

软件工程应用与实践(九):Paddle OCR文字识别器策略七_第4张图片

        左图是RNN结构,右图是Seq2Seq结构。

        RNN的输入序列和输出序列必须有相同的时间长度,而机器翻译以及文字识别任务都是输入输出不对齐的,不能直接使用RNN结构进行解码。于是在Seq2Seq结构中,将输入序列进行Encoder编码成一个统一的语义向量Context,然后送入Decoder中一个一个解码出输出序列。在Decoder解码过程中,第一个输入字符为,然后不断将前一个时刻的输出作为下一个时刻的输入,循环解码,直到输出字符为止 。

Seq2Seq -> Attention Decoder

软件工程应用与实践(九):Paddle OCR文字识别器策略七_第5张图片

        如上图所示,利用Encoder所有隐藏层状态解决Context长度限制问题。于是Attention Decoder在Seq2Seq的基础上,增加了一个Attention Layer。

        软件工程应用与实践(九):Paddle OCR文字识别器策略七_第6张图片

  如上图所示,在Attention Layer中,Decoder时,每个时刻的解码状态跟Encoder的所有隐藏层状态进行cross-attention计算,cross-attention将当前解码的隐藏层状态和encoder的所有隐藏层状态做相关性计算,然后对encoder的所有隐藏层加权求和,最后和当前解码的隐藏层状态concat得到最终的状态。

三、RARE算法在文字识别模型中的代码实现

3.1  代码位置

3.2  关键代码

class AttentionHead(nn.Layer):
    def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
        super(AttentionHead, self).__init__()
        self.input_size = in_channels
        self.hidden_size = hidden_size
        self.num_classes = out_channels

        self.attention_cell = AttentionGRUCell(
            in_channels, hidden_size, out_channels, use_gru=False)
        self.generator = nn.Linear(hidden_size, out_channels)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None, batch_max_length=25):
        batch_size = paddle.shape(inputs)[0]
        num_steps = batch_max_length

        hidden = paddle.zeros((batch_size, self.hidden_size))
        output_hiddens = []

        if targets is not None:
            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets[:, i], onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
            output = paddle.concat(output_hiddens, axis=1)
            probs = self.generator(output)

        else:
            targets = paddle.zeros(shape=[batch_size], dtype="int32")
            probs = None
            char_onehots = None
            outputs = None
            alpha = None

            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets, onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                probs_step = self.generator(outputs)
                if probs is None:
                    probs = paddle.unsqueeze(probs_step, axis=1)
                else:
                    probs = paddle.concat(
                        [probs, paddle.unsqueeze(
                            probs_step, axis=1)], axis=1)
                next_input = probs_step.argmax(axis=1)
                targets = next_input

        return probs


class AttentionGRUCell(nn.Layer):
    def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
        super(AttentionGRUCell, self).__init__()
        self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.score = nn.Linear(hidden_size, 1, bias_attr=False)

        self.rnn = nn.GRUCell(
            input_size=input_size + num_embeddings, hidden_size=hidden_size)

        self.hidden_size = hidden_size

    def forward(self, prev_hidden, batch_H, char_onehots):

        batch_H_proj = self.i2h(batch_H)
        prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)

        res = paddle.add(batch_H_proj, prev_hidden_proj)
        res = paddle.tanh(res)
        e = self.score(res)

        alpha = F.softmax(e, axis=1)
        alpha = paddle.transpose(alpha, [0, 2, 1])
        context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
        concat_context = paddle.concat([context, char_onehots], 1)

        cur_hidden = self.rnn(concat_context, prev_hidden)

        return cur_hidden, alpha


class AttentionLSTM(nn.Layer):
    def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
        super(AttentionLSTM, self).__init__()
        self.input_size = in_channels
        self.hidden_size = hidden_size
        self.num_classes = out_channels

        self.attention_cell = AttentionLSTMCell(
            in_channels, hidden_size, out_channels, use_gru=False)
        self.generator = nn.Linear(hidden_size, out_channels)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None, batch_max_length=25):
        batch_size = inputs.shape[0]
        num_steps = batch_max_length

        hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
            (batch_size, self.hidden_size)))
        output_hiddens = []

        if targets is not None:
            for i in range(num_steps):
                # one-hot vectors for a i-th char
                char_onehots = self._char_to_onehot(
                    targets[:, i], onehot_dim=self.num_classes)
                hidden, alpha = self.attention_cell(hidden, inputs,
                                                    char_onehots)

                hidden = (hidden[1][0], hidden[1][1])
                output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
            output = paddle.concat(output_hiddens, axis=1)
            probs = self.generator(output)

        else:
            targets = paddle.zeros(shape=[batch_size], dtype="int32")
            probs = None

            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets, onehot_dim=self.num_classes)
                hidden, alpha = self.attention_cell(hidden, inputs,
                                                    char_onehots)
                probs_step = self.generator(hidden[0])
                hidden = (hidden[1][0], hidden[1][1])
                if probs is None:
                    probs = paddle.unsqueeze(probs_step, axis=1)
                else:
                    probs = paddle.concat(
                        [probs, paddle.unsqueeze(
                            probs_step, axis=1)], axis=1)

                next_input = probs_step.argmax(axis=1)

                targets = next_input

        return probs


class AttentionLSTMCell(nn.Layer):
    def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
        super(AttentionLSTMCell, self).__init__()
        self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.score = nn.Linear(hidden_size, 1, bias_attr=False)
        if not use_gru:
            self.rnn = nn.LSTMCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)
        else:
            self.rnn = nn.GRUCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)

        self.hidden_size = hidden_size

    def forward(self, prev_hidden, batch_H, char_onehots):
        batch_H_proj = self.i2h(batch_H)
        prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
        res = paddle.add(batch_H_proj, prev_hidden_proj)
        res = paddle.tanh(res)
        e = self.score(res)

        alpha = F.softmax(e, axis=1)
        alpha = paddle.transpose(alpha, [0, 2, 1])
        context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
        concat_context = paddle.concat([context, char_onehots], 1)
        cur_hidden = self.rnn(concat_context, prev_hidden)

        return cur_hidden, alpha


 

总结

以上简单介绍了基于attention的文字识别模型。本篇及之后陆续发布的文章,将会陆续对之前的策略介绍进行补充(与之前介绍策略的文章的发布顺序没有太大关系,在哪个部分有新的认识就会补充哪里)欢迎大家指正。

你可能感兴趣的:(paddle,r语言,python)