OpenCV.图像直方图

图像直方图

图像直方图反映的是图像的统计学特征,可大概看出其分布特征。

假设某输入源为普通图像,经二值化后其显示像素值范围为0~255,其像素值经过排序后呈正常分布,那么某一像素值或某一像素范围可大概描述其像素特征。即其BIN(BIN越多,直方图对颜色的分辨率越强)取值范围越大,其空间分布越平均,越小则会有尖锐。

基于此可以统计图像的BIN以此来绘制其直方图,其函数声明如下:

calcHist(images, channels, mask, hist, histSize, ranges);

各参数解释如下:

  • images
    输入图像,List< Mat>类型。

  • channels
    通道索引数。

  • mask
    表示images遮盖层。

  • hist
    计算而得的直方图数据,为一维或二维的稀疏矩阵。

  • histSize
    直方图的大小,BIN的个数。

  • ranges
    直方图取值范围。

Java代码(JavaFX Controller层)

public class Controller{

    @FXML private Text fxText;
    @FXML private ImageView imageView;

    @FXML public void handleButtonEvent(ActionEvent actionEvent) throws IOException {

        Node source = (Node) actionEvent.getSource();
        Window theStage = source.getScene().getWindow();
        FileChooser fileChooser = new FileChooser();
        FileChooser.ExtensionFilter extFilter = new FileChooser.ExtensionFilter("PNG files (*.png)", "*.png");
        fileChooser.getExtensionFilters().add(extFilter);
        fileChooser.getExtensionFilters().add(new FileChooser.ExtensionFilter("JPG Files(*.jpg)", "*.jpg"));
        File file = fileChooser.showOpenDialog(theStage);

        runInSubThread(file.getPath());

    }

    private void runInSubThread(String filePath){
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    WritableImage writableImage = drawHistogram(filePath);

                    Platform.runLater(new Runnable() {
                        @Override
                        public void run() {
                            imageView.setImage(writableImage);
                        }
                    });

                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
    
    private WritableImage drawHistogram(String filePath) throws IOException {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

        Mat src = Imgcodecs.imread(filePath);
        Mat dst = new Mat();

        // Calculate image histogram data and normalization.
        Mat gray = new Mat();
        Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
        List<Mat> images = new ArrayList<>();
        images.add(gray);
        Mat mask = Mat.ones(src.size(), CvType.CV_8UC1);
        Mat hist = new Mat();
        Imgproc.calcHist(images, new MatOfInt(0), mask, hist, new MatOfInt(256), new MatOfFloat(0,255));
        Core.normalize(hist, hist,0,255, Core.NORM_MINMAX);
        int height = hist.rows();

        dst.create(400,400,src.type());
        dst.setTo(new Scalar(200,200,200));
        float[] histData = new float[256];
        hist.get(0,0, histData);
        int offset_x = 50;
        int offset_y = 350;

        // Draw histogram.
        Imgproc.line(dst, new Point(offset_x, 0), new Point(offset_x, offset_y), new Scalar(0,0,0));
        Imgproc.line(dst, new Point(offset_x, offset_y), new Point(400, offset_y), new Scalar(0,0,0));
        for (int i = 0; i < height - 1; i++) {
            int y1 = (int)histData[i];
            int y2 = (int)histData[i+1];
            Rect rect = new Rect();
            rect.x = offset_x + i;
            rect.y = offset_y - y1;
            rect.width = 1;
            rect.height = y1;
            Imgproc.rectangle(dst, rect.tl(), rect.br(), new Scalar(15,15,15) );
        }

        MatOfByte matOfByte = new MatOfByte();
        Imgcodecs.imencode(".jpg", dst, matOfByte);

        byte[] bytes = matOfByte.toArray();
        InputStream in = new ByteArrayInputStream(bytes);
        BufferedImage bufImage = ImageIO.read(in);

        WritableImage writableImage = SwingFXUtils.toFXImage(bufImage, null);

        return writableImage;
    }

}



运行图
OpenCV.图像直方图_第1张图片

原图
OpenCV.图像直方图_第2张图片

如何查看图像直方图
正文已经提及,图像直方图描述的是统计学特征。那么通尔易俗地讲,二值化的图像直方图描述的就是其黑白颜色在其空间上的分布,如下:

OpenCV.图像直方图_第3张图片

OpenCV.图像直方图_第4张图片
现在回顾一下原图,即Lenna人物图,发现其二值化图像黑色区域在帽子与镜子边缘及头发部分,而白色区域仅在部分线条和帽子区域,而值域[100,200]则占大部分,这与计算的二值图像描述刚好对应。

你可能感兴趣的:(OpenCV,JavaFX,opencv,计算机视觉,人工智能)