题意:有n个人,n个房子,一个人每走一步(可上、下、左、右取一个方向)花费1美元,问让这n个人走到n个房子里最少需要多少美元(n <= 100)。
题目链接:http://poj.org/problem?id=2195
——>>在学最小费用最大流,找模版题找到了这道。
建图:1到n为人的编号,n+1到2*n为房子的编号,另加上源点0和汇点2*n+1;
源点到每个人各建立一条容量为1的流,费用为0;
每个人到每个房子各建立一条容量为1的流,费用按题意计算;(注意:反向费用!!!)
每个房子到汇点建立一条容量为1的流,费用为0。
当满足最大流时,一定是源点发出n,每个人接收1并发出1到一个房子,n个房子各发出1汇成n到汇点,所以,真是最小费用最大流的模版题。
#include <cstdio> #include <cmath> #include <cstring> #include <queue> #include <algorithm> using namespace std; const int maxn = 2 * (100 + 10); const int INF = 0x3f3f3f3f; struct node{ //结点类型 int x; int y; }m[maxn], h[maxn]; int N, M, n, t, mid, hid, cost[maxn][maxn], cap[maxn][maxn], flow[maxn][maxn], p[maxn]; vector<node> man, house; void init(){ //初始化 mid = 0; hid = 0; memset(cost, 0, sizeof(cost)); memset(cap, 0, sizeof(cap)); } void build(){ //建图 n = mid; t = mid + hid + 1; int i, j; for(i = 1; i <= n; i++){ for(j = 1; j <= n; j++){ cap[i][j+n] = 1; cost[i][j+n] = abs(m[i].x - h[j].x) + abs(m[i].y - h[j].y); cost[j+n][i] = -cost[i][j+n]; //注意这里加上回流!!! } } for(i = 1; i <= n; i++) cap[0][i] = 1; for(i = n+1; i < t; i++) cap[i][t] = 1; } int solve(int s){ queue<int> qu; int d[maxn]; memset(flow, 0, sizeof(flow)); int c = 0; for(;;){ bool inq[maxn]; memset(d, 0x3f, sizeof(d)); d[0] = 0; memset(inq, 0, sizeof(inq)); qu.push(s); while(!qu.empty()){ int u = qu.front(); qu.pop(); inq[u] = 0; for(int v = 0; v <= t; v++) if(cap[u][v] > flow[u][v] && d[u] + cost[u][v] < d[v]){ d[v] = d[u] + cost[u][v]; p[v] = u; if(!inq[v]){ qu.push(v); inq[v] = 1; } } } if(d[t] == INF) break; int a = INF; for(int u = t; u != s; u = p[u]) a = min(a, cap[p[u]][u] - flow[p[u]][u]); for(int u = t; u != s; u = p[u]){ flow[p[u]][u] += a; flow[u][p[u]] -= a; } c += d[t] * a; } return c; } int main() { int i, j; char c; while(scanf("%d%d", &N, &M) == 2){ if(!N && !M) return 0; init(); for(i = 0; i < N; i++){ getchar(); for(j = 0; j < M; j++){ c = getchar(); if(c == 'H') h[++hid] = (node){i, j}; if(c == 'm') m[++mid] = (node){i, j}; } } build(); printf("%d\n", solve(0)); } return 0; }