- 对话小羊驼vicuna
Always_Shine
大模型人工智能深度学习大模型自然语言处理
文章目录1.gpu租用2.公网网盘存储实例/数据3.登录实例4.预训练模型下载5.llama、alpaca、vicuna的前世今生6.对话Vicuna(1)llama-2-7b-hf(2)vicuna-7b-delta-v0(3)vicuna-7b-v0(4)执行推理1.gpu租用阿里云(AlibabaCloud)https://www.aliyun.com腾讯云(TencentCloud)htt
- 【安装cudnn】
Eternal-Student
linuxlinux
官网下载并安装如果打算使用深度学习框架,如TensorFlow或PyTorch,并且需要GPU加速,可能还需要安装NVIDIA的cuDNN库,它是一个GPU加速的深度神经网络库。officialweb:https://developer.nvidia.com/cudnn下载具体:cuDNN9.5.0Downloads历史版本下载:https://developer.nvidia.com/rdp/c
- Tesla V100驱动安装
郭宝才
linux服务器运维
确认操作系统kernel版本,参考链接:https://docs.nvidia.com/cuda/archive/12.2.0/cuda-installation-guide-linux/index.html安装依赖yuminstall-ygccgcc-c++rdma-coredkmselfutils-libelf-develntpyuminstall-ykernel-devel-$(uname-
- 显卡各种参数
iteye_17699
显卡各种参数2011年04月10日常见的显卡参数分为以下三部分:一、显示核心(芯片厂商、代号、型号、架构、频率、象素渲染管线、顶点着色引擎数、3DAPI、RAMDAC频率及支持MAX分辨率等)。二、显存颗粒(类型、封装类型、位宽、容量、速度、频率)三、PCB板(PCB层数、接口、供电位、散热器)一、显示核心显示核心就是所说的GPU,它在显卡中的作用,就像电脑整机中CPU的一样,GPU主要负责处理视
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 大模型项目落地时,该如何估算模型所需GPU算力资源
kcarly
大模型知识乱炖认识系列gpu算力深度学习自然语言处理AIGC
近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。不喜欢过程的可以直接跳到HF上提供的模型计算器要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。大模型的规模、参数的理解模型参数单位我们的项目中客户之前测试过Qwen1.5-110B的模型,效果还比较满意。(Qwen还是国产模型中比较稳定的也是很多项目的首选)模型中
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 运行虚幻引擎UE设置Visual Studio
yblackd
虚幻visualstudioc++
运行虚幻引擎UE设置VisualStudio1.枚举转换为字符串2.修改解决方案配置下拉框宽度3.调试较慢4.如何修复GPU驱动程序崩溃1.枚举转换为字符串-Desc:从静态Uenum调用GetNameStringByValue并为其提供你要获取其名称的值,可以将枚举转换为字符串。初始化Uenum时使用的StaticEnum与传入其数值的枚举,两者的类型必须相同。EMyEnum::TypeMyVa
- Carla 启动报错:Exception thrown: bind: Address already in use Signal 11 caught.
睡不醒的小泽
服务器运维
./CarlaUE4.sh-prefernvidia4.24.3-0+++UE4+Release-4.245180Disablingcoredumps.LowLevelFatalError[File:Unknown][Line:102]Exceptionthrown:bind:AddressalreadyinuseSignal11caught.MallocSize=65538LargeMemory
- PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- Jetson Orin Nano Super之pytorch + torchvision安装
lida2003
Linux人工智能jetsonorin
JetsonOrinNanoSuper之pytorch+torchvision安装1源由2.安装pytorch2.1NVIDIA手动版本下载2.2开源自己编译版本3.安装torchvision4.参考资料1源由YoloincompatiblewithJetpack6.2(JetsonOrinNanoSuper)YoloincompatiblewithJetpack6.2(JetsonOrinNan
- NVIDIA-TensorRT-Python推理
呆呆珝
推理框架python人工智能开发语言
1,前言NVIDIATensorRT进行模型推理的Python实现。TensorRT是一个高性能的深度学习推理优化器和运行时,它能够为深度学习模型提供低延迟和高吞吐量的推理能力。(由于官方文档的使用还是比较简单,也可能自己很菜,参考了别人的文档和自己摸索,写出来这个可以使用的API)2.Python-API推理step1:导入基本库(环境自行配置)#导入TensorRT库importtensorr
- springboot+vue项目实战2024第四集修改文章信息
java后端
1.添加文章信息@PostMappingpublicResultadd(@RequestBody@ValidatedArticlearticle){articleService.add(article);returnResult.success();}voidadd(Articlearticle);@Overridepublicvoidadd(Articlearticle){article.set
- 如何训练Stable Diffusion 模型
俊偉
AGIstablediffusion扩散模型训练AI炼丹
训练StableDiffusion模型是一个复杂且资源密集的过程,通常需要大量的计算资源(如GPU或TPU)和时间。StableDiffusion是一种基于扩散模型的生成式AI,能够根据文本提示生成高质量的图像。它的训练过程涉及多个步骤,包括数据准备、模型配置、训练参数调整等。以下是训练StableDiffusion模型的基本步骤和注意事项:1.环境准备1.1安装依赖项首先,确保你有一个适合深度学
- FPGA在空间领域应用的权衡之道
forgeda
EDA硬件辅助验证fpga开发硬件架构嵌入式硬件EDA硬件辅助验证故障注入测试SEUEmulation商业航天
新官上任,干货较多。去年10月30日,紫光国微在投资者关系活动中表示,对FPGA产品的国产化率以及未来价格压力趋势的答复是,除了个别品类外,FPGA领域已基本完成国产化替代。价格竞争激烈,现有存量市场需求不足,导致产品价格成为重要竞争手段等。价格是市场新进入者的唯一机会,FPGA行业自然也不例外。当下火热的“智算概念”,如果说GPU在数据中心堆算力的方式有多风光,那么在追求性能之外,必须权衡SWa
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- CSGHub 快速部署指南
算法llm
CSGHub快速部署指南OmnibusCSGHub是OpenCSG推出的使用Docker快速部署CSGHub的一种方式,主要用于快速功能体验和测试。Docker部署方式允许用户以较低成本在本地计算机部署CSGHub。此种部署方法非常适合概念验证和测试,使用户能够立即访问CSGHub的核心功能(包括模型,数据集管理、Space应用创建以及模型的推理和微调(需要GPU))。本文将带您一步步完成部署。什
- 详细介绍 NVIDIA GeForce RTX 系列,各显卡配置参数(长期更新 - 2024.12)
JiaWen技术圈
人工智能深度学习机器学习gpu算力AIGC人工智能图形渲染
NVIDIAGeForceRTX系列是NVIDIA面向消费级市场的高性能GPU产品线,注重提供高性能的图形处理能力和游戏特性。主要面向游戏玩家和普通用户,同时也被广泛用于深度学习推理和训练等计算密集型任务。主要GPU产品有:50Series、40Series、30Series、20Series、10Series。其主要参数如下:NVIDIAGeForceRTX50Series规格架构:Blackw
- 对本地部署的ChatGLM模型进行API调用
BBluster
LLMpython开发语言语言模型
ChatGLM作为一个小参数模型,给予了我们在本地部署LLM的条件,接下来我将展示如何使用python对本地部署的ChatGLM模型进行API调用对于如何部署本地ChatGLM模型我们可以访问本地化部署大语言模型ChatGLM接下来我首先分享api调用的测试代码:importtimeimportrequests#测试GPU运行是否成功deftest_function_1():importtorch
- NVIDIA GPU架构
gy笨瓜
NVIDIAGPU
本文主要为1.NVIDIAGeForce800系列GPU架构2.GTX1050TiGPU架构NVIDIAGeForce800系列型号芯片代号架构GeForce800MGF117FermiGeForce810M(GF117)GF117FermiGeForce810M(GK107)GK107KeplerGeForce820M(GF117)GF117FermiGeForce820M(GK107)GK10
- GPU 集群和分布式计算
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《GPU集群和分布式计算》关键词:GPU集群、分布式计算、CUDA、OpenACC、OpenMP、性能优化、故障处理、案例分析摘要:本文详细探讨了GPU集群和分布式计算的基本概念、架构、编程模型以及应用场景。通过剖析GPU集群在多个领域的实际应用,探讨了性能优化和故障处理的方法,并提供了若干案例以加深理解。文章旨在为读者提供一个全面而深入的GPU集群和分布式计算的知识框架。《GPU集群和分布式计算
- 360智算中心万卡GPU集群架构分析
科技互联人生
科技数码人工智能硬件架构系统架构人工智能
360智算中心:万卡GPU集群落地实践 360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨3
- 导出 YOLOv11 模型的详细步骤和说明
old_power
计算机视觉YOLO人工智能计算机视觉
以下是关于如何导出YOLOv11模型的详细步骤和说明:1.导出YOLOv11模型的基本步骤YOLOv11模型可以通过Ultralytics提供的接口轻松导出为多种格式,如ONNX、TensorRT、CoreML等。以下是导出模型的基本步骤:1.1安装Ultralytics库首先,确保已安装Ultralytics库:pipinstallultralytics1.2加载模型并导出使用Python代码加
- 3D高斯泼溅原理及实践【3DGS】
新缸中之脑
3d
人工智能可能是我们这个时代的主要领域之一,它几乎可以用于从驾驶汽车到医疗保健甚至能够预防失明等所有领域,最近提出了一种新的3D重建方法。SNGULAR及其人工智能团队希望了解有关3D重建技术的最新更新的更多信息。目前可用于3D重建的许多SOTA方法需要大量CPU/GPU使用率来处理场景或渲染场景,其中一些甚至需要两者兼而有之。SIGGRAPH2023GaussianSplatting上提出的新方法
- python 随机数 随机种子
AI算法网奇
python宝典python开发语言后端
目录神经网络推理随机种子gpu新版:神经网络推理随机种子gpu:神经网络推理随机种子含npu:numpy.full创建相同矩阵python生成n个随机整数python随机数种子,每次获取相同的随机数随机在区间M内取不重复的N个随机数取一个范围内均匀不重复的随机数神经网络推理随机种子gpu新版:defset_random_seed(seed):"""Setrandomseeds."""random.
- 英伟达打造个人 AI 超级计算机:Project DIGITS 震撼登场
手掌大小的超级计算机Nvidia在CES2025上为桌面用户推出了一款大小和手掌差不多的超级计算机——ProjectDIGITSAI超级计算机。虽然它的大小和一个手掌差不多,但性能方面可以说是强到惊人。ProjectDIGITSProjectDIGITSProjectDIGITS搭载全新的GB10GraceBlackwell超级芯片,这是一款基于NVIDIAGraceBlackwell架构的片上系
- NVIDIA DPU — DOCA — Overview
范桂飓
软硬件融合加速技术专栏正则表达式服务器运维
目录文章目录目录DOCADOCA的软件架构DOCA的部署架构DOCA的零信任安全框架DOCA的开发周期DOCA早在2020年GTC大会上,英伟达发布了BlueField-2DPU,与之一同发布了DOCA1.0。DOCA(Data-CenterInfrastructureonaChipArchitecture,集数据中心功能于芯片的架构)是一个抽象的层,简化了API的调用。开发者可以直接使用底层的D
- RocketMQ源码之消息刷盘分析
小虾米 ~
RocketMQrocketmq
前言刷盘是将内存中的消息写入磁盘,分为同步刷盘和异步刷盘。同步刷盘指一条消息写入磁盘才返回成功,异步刷盘指写入内存就返回成功,稍后异步线程刷盘。在创建CommitLog对象的时候,会初始化刷盘服务://代码位置:org.apache.rocketmq.store.CommitLogpublicCommitLog(finalDefaultMessageStoredefaultMessageStore
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓