题目一 :背包问题
给定两个长度都为N的数组weights和values,
weights[i]和values[i]分别代表 i号物品的重量和价值。
给定一个正数bag,表示一个载重bag的袋子,
你装的物品不能超过这个重量。
返回你能装下最多的价值是多少?
从左往右尝试模型
暴力递归
// 所有的货,重量和价值,都在w和v数组里
// 为了方便,其中没有负数
// bag背包容量,不能超过这个载重
// 返回:不超重的情况下,能够得到的最大价值
public static int maxValue(int[] w, int[] v, int bag) {
if (w == null || v == null || w.length != v.length || w.length == 0) {
return 0;
}
// 尝试函数!
return process(w, v, 0, bag);
}
// index 0~N
// rest 负~bag
public static int process(int[] w, int[] v, int index, int rest) {
if (rest < 0) {
return -1;
}
if (index == w.length) {
return 0;
}
int p1 = process(w, v, index + 1, rest);
int p2 = 0;
int next = process(w, v, index + 1, rest - w[index]);
if (next != -1) {
p2 = v[index] + next;
}
return Math.max(p1, p2);
}
改动态规划
public static int dp(int[] w, int[] v, int bag) {
if (w == null || v == null || w.length != v.length || w.length == 0) {
return 0;
}
int N = w.length;
int[][] dp = new int[N + 1][bag + 1];
for (int index = N - 1; index >= 0; index--) {
for (int rest = 0; rest <= bag; rest++) {
int p1 = dp[index + 1][rest];
int p2 = 0;
int next = rest - w[index] < 0 ? -1 : dp[index + 1][rest - w[index]];
if (next != -1) {
p2 = v[index] + next;
}
dp[index][rest] = Math.max(p1, p2);
}
}
return dp[0][bag];
}
题目二
规定1和A对应、2和B对应、3和C对应...26和Z对应
那么一个数字字符串比如"111”就可以转化为:
"AAA"、"KA"和"AK"
给定一个只有数字字符组成的字符串str,返回有多少种转化结果
从左往右尝试模型
暴力递归
// str只含有数字字符0~9
// 返回多少种转化方案
public static int number(String str) {
if (str == null || str.length() == 0) {
return 0;
}
return process(str.toCharArray(), 0);
}
// str[0..i-1]转化无需过问
// str[i.....]去转化,返回有多少种转化方法
public static int process(char[] str, int i) {
if (i == str.length) {
return 1;
}
// i没到最后,说明有字符
if (str[i] == '0') { // 之前的决定有问题
return 0;
}
// str[i] != '0'
// 可能性一,i单转
int ways = process(str, i + 1);
if (i + 1 < str.length && (str[i] - '0') * 10 + str[i + 1] - '0' < 27) {
ways += process(str, i + 2);
}
return ways;
}
改动态规划
// 从右往左的动态规划
// 就是上面方法的动态规划版本
// dp[i]表示:str[i...]有多少种转化方式
public static int dp1(String s) {
if (s == null || s.length() == 0) {
return 0;
}
char[] str = s.toCharArray();
int N = str.length;
int[] dp = new int[N + 1];
dp[N] = 1;
for (int i = N - 1; i >= 0; i--) {
if (str[i] != '0') {
int ways = dp[i + 1];
if (i + 1 < str.length && (str[i] - '0') * 10 + str[i + 1] - '0' < 27) {
ways += dp[i + 2];
}
dp[i] = ways;
}
}
return dp[0];
}
// 从左往右的动态规划
// dp[i]表示:str[0...i]有多少种转化方式
public static int dp2(String s) {
if (s == null || s.length() == 0) {
return 0;
}
char[] str = s.toCharArray();
int N = str.length;
if (str[0] == '0') {
return 0;
}
int[] dp = new int[N];
dp[0] = 1;
for (int i = 1; i < N; i++) {
if (str[i] == '0') {
// 如果此时str[i]=='0',那么他是一定要拉前一个字符(i-1的字符)一起拼的,
// 那么就要求前一个字符,不能也是‘0’,否则拼不了。
// 前一个字符不是‘0’就够了嘛?不够,还得要求拼完了要么是10,要么是20,如果更大的话,拼不了。
// 这就够了嘛?还不够,你们拼完了,还得要求str[0...i-2]真的可以被分解!
// 如果str[0...i-2]都不存在分解方案,那i和i-1拼成了也不行,因为之前的搞定不了。
if (str[i - 1] == '0' || str[i - 1] > '2' || (i - 2 >= 0 && dp[i - 2] == 0)) {
return 0;
} else {
dp[i] = i - 2 >= 0 ? dp[i - 2] : 1;
}
} else {
dp[i] = dp[i - 1];
if (str[i - 1] != '0' && (str[i - 1] - '0') * 10 + str[i] - '0' <= 26) {
dp[i] += i - 2 >= 0 ? dp[i - 2] : 1;
}
}
}
return dp[N - 1];
}
题目三
给定一个字符串str,给定一个字符串类型的数组arr,出现的字符都是小写英文
arr每一个字符串,代表一张贴纸,你可以把单个字符剪开使用,目的是拼出str来
返回需要至少多少张贴纸可以完成这个任务。
例子:str= "babac",arr = {"ba","c","abcd"}
ba + ba + c 3 abcd + abcd 2 abcd+ba 2
所以返回2
暴力递归
public static int minStickers1(String[] stickers, String target) {
int ans = process1(stickers, target);
return ans == Integer.MAX_VALUE ? -1 : ans;
}
// 所有贴纸stickers,每一种贴纸都有无穷张
// target
// 最少张数
public static int process1(String[] stickers, String target) {
if (target.length() == 0) {
return 0;
}
int min = Integer.MAX_VALUE;
for (String first : stickers) {
String rest = minus(target, first);
if (rest.length() != target.length()) {
min = Math.min(min, process1(stickers, rest));
}
}
return min + (min == Integer.MAX_VALUE ? 0 : 1);
}
public static String minus(String s1, String s2) {
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
int[] count = new int[26];
for (char cha : str1) {
count[cha - 'a']++;
}
for (char cha : str2) {
count[cha - 'a']--;
}
StringBuilder builder = new StringBuilder();
for (int i = 0; i < 26; i++) {
if (count[i] > 0) {
for (int j = 0; j < count[i]; j++) {
builder.append((char) (i + 'a'));
}
}
}
return builder.toString();
}
public static int minStickers2(String[] stickers, String target) {
int N = stickers.length;
// 关键优化(用词频表替代贴纸数组)
int[][] counts = new int[N][26];
for (int i = 0; i < N; i++) {
char[] str = stickers[i].toCharArray();
for (char cha : str) {
counts[i][cha - 'a']++;
}
}
int ans = process2(counts, target);
return ans == Integer.MAX_VALUE ? -1 : ans;
}
// stickers[i] 数组,当初i号贴纸的字符统计 int[][] stickers -> 所有的贴纸
// 每一种贴纸都有无穷张
// 返回搞定target的最少张数
// 最少张数
public static int process2(int[][] stickers, String t) {
if (t.length() == 0) {
return 0;
}
// target做出词频统计
// target aabbc 2 2 1..
// 0 1 2..
char[] target = t.toCharArray();
int[] tcounts = new int[26];
for (char cha : target) {
tcounts[cha - 'a']++;
}
int N = stickers.length;
int min = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
// 尝试第一张贴纸是谁
int[] sticker = stickers[i];
// 最关键的优化(重要的剪枝!这一步也是贪心!)
if (sticker[target[0] - 'a'] > 0) {
StringBuilder builder = new StringBuilder();
for (int j = 0; j < 26; j++) {
if (tcounts[j] > 0) {
int nums = tcounts[j] - sticker[j];
for (int k = 0; k < nums; k++) {
builder.append((char) (j + 'a'));
}
}
}
String rest = builder.toString();
min = Math.min(min, process2(stickers, rest));
}
}
return min + (min == Integer.MAX_VALUE ? 0 : 1);
}
改动态规划
public static int minStickers3(String[] stickers, String target) {
int N = stickers.length;
int[][] counts = new int[N][26];
for (int i = 0; i < N; i++) {
char[] str = stickers[i].toCharArray();
for (char cha : str) {
counts[i][cha - 'a']++;
}
}
HashMap dp = new HashMap<>();
dp.put("", 0);
int ans = process3(counts, target, dp);
return ans == Integer.MAX_VALUE ? -1 : ans;
}
public static int process3(int[][] stickers, String t, HashMap dp) {
if (dp.containsKey(t)) {
return dp.get(t);
}
char[] target = t.toCharArray();
int[] tcounts = new int[26];
for (char cha : target) {
tcounts[cha - 'a']++;
}
int N = stickers.length;
int min = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
int[] sticker = stickers[i];
if (sticker[target[0] - 'a'] > 0) {
StringBuilder builder = new StringBuilder();
for (int j = 0; j < 26; j++) {
if (tcounts[j] > 0) {
int nums = tcounts[j] - sticker[j];
for (int k = 0; k < nums; k++) {
builder.append((char) (j + 'a'));
}
}
}
String rest = builder.toString();
min = Math.min(min, process3(stickers, rest, dp));
}
}
int ans = min + (min == Integer.MAX_VALUE ? 0 : 1);
dp.put(t, ans);
return ans;
}
题目四
给定两个字符串str1和str2,
返回这两个字符串的最长公共子序列长度
比如 : str1 = “a12b3c456d”,str2 = “1ef23ghi4j56k”
最长公共子序列是“123456”,所以返回长度6
样本对应模型
暴力递归
public static int longestCommonSubsequence1(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
// 尝试
return process1(str1, str2, str1.length - 1, str2.length - 1);
}
public static int process1(char[] str1, char[] str2, int i, int j) {
if (i == 0 && j == 0) {
return str1[i] == str2[j] ? 1 : 0;
} else if (i == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process1(str1, str2, i, j - 1);
}
} else if (j == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process1(str1, str2, i - 1, j);
}
} else { // i != 0 && j != 0
int p1 = process1(str1, str2, i - 1, j);
int p2 = process1(str1, str2, i, j - 1);
int p3 = str1[i] == str2[j] ? (1 + process1(str1, str2, i - 1, j - 1)) : 0;
return Math.max(p1, Math.max(p2, p3));
}
}
改动态规划
public static int longestCommonSubsequence2(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
int N = str1.length;
int M = str2.length;
int[][] dp = new int[N][M];
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
for (int j = 1; j < M; j++) {
dp[0][j] = str1[0] == str2[j] ? 1 : dp[0][j - 1];
}
for (int i = 1; i < N; i++) {
dp[i][0] = str1[i] == str2[0] ? 1 : dp[i - 1][0];
}
for (int i = 1; i < N; i++) {
for (int j = 1; j < M; j++) {
int p1 = dp[i - 1][j];
int p2 = dp[i][j - 1];
int p3 = str1[i] == str2[j] ? (1 + dp[i - 1][j - 1]) : 0;
dp[i][j] = Math.max(p1, Math.max(p2, p3));
}
}
return dp[N - 1][M - 1];
}