- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- 【Python机器学习】无监督学习——K-均值聚类算法
zhangbin_237
Python机器学习机器学习算法pythonkmeansk-means均值算法
聚类是一种无监督的学习,它将相似的对象归到同一簇中,它有点像全自动分类。聚类方法几乎可以应用于所有的对象,簇内的对象越相似,聚类的效果越好。K-均值聚类算法就是一种典型的聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。簇识别给出聚类结果的含义,假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在
- 利用双分支CycleGAN进行图像数据的高效增强
jizhi-dataset
人工智能
随着人工智能技术的快速发展,图像数据处理变得越来越重要。为了提高图像数据的质量和可用性,我们需要采用高效的数据增强方法。双分支CycleGAN网络作为一种先进的图像处理技术,为我们提供了一种全新的解决方案。本文将详细介绍双分支CycleGAN的工作原理,并展示其在图像数据增强方面的实际效果。同时,我们也将讨论在实际应用过程中可能遇到的挑战以及如何解决这些问题。,,CycleGAN是一种用于图像到图
- 揭秘AIP智能体平台:构建未来AI基础设施的新引擎
大东(AIP内容运营专员)
人工智能
在人工智能的浪潮中,科技正在改变我们生活的方方面面。从智能推荐到自动驾驶,从个性化广告到实时风险控制,AI的触角无处不在。但这些令人瞩目的成果背后,究竟是什么在支撑着AI的飞速发展?答案是——人工智能平台。人工智能平台是连接计算资源、开发工具和行业应用的重要桥梁,支撑着从模型开发到行业场景落地的每一个环节。它不仅为开发者提供高效便捷的工具,还为企业创造了无限的创新可能。本文将带你深入了解人工智能平
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习模型推理速度/吞吐量计算(附代码)
Scabbards_
1500深度学习笔记深度学习人工智能
参考博文:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247546551&idx=2&sn=f198b6365e11f0a18832ff1203302632&chksm=ebb70e63dcc0877569d1838b2391744be628bf6cbb6e203a49f855e0769ecbbbf5a9929fe2db&scene
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- ChatGPT详解
Loving_enjoy
实用技巧人工智能自然语言处理
ChatGPT是一款由OpenAI研发和维护的先进的自然语言处理模型(NLP),全名为ChatGenerativePre-trainedTransformer,于2022年11月30日发布。以下是对ChatGPT的详细介绍:###一、技术架构与原理1.**技术架构**:ChatGPT建立在Transformer架构之上,这是一种深度学习模型,特别适用于处理自然语言。其核心是自注意力机制,允许模型在
- 《鸿蒙Next应用商店:人工智能开启智能推荐与运营新时代》
人工智能深度学习
在科技飞速发展的当下,鸿蒙Next系统的出现为操作系统领域带来了新的变革与机遇,而人工智能技术的融入更是让其应用商店的智能化推荐和运营迈向了一个全新的高度。用户画像精准构建在鸿蒙Next系统中,应用商店可以借助系统强大的权限管理和数据收集能力,全方位收集用户的多维度数据。通过对用户在应用商店内的浏览历史、下载记录、搜索关键词,以及在其他鸿蒙应用中的使用行为等多源数据进行汇总和分析,利用人工智能算法
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题
Loving_enjoy
论文深度学习计算机视觉人工智能
###Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题####引言在金融领域中,欺诈检测是一项至关重要的任务。然而,欺诈交易数据往往呈现出正负样本极度不平衡的特点,这给机器学习模型的训练带来了挑战。传统的分类算法在面对这种不平衡数据时,往往会导致模型对多数类(正常交易)过拟合,而对少数类(欺诈交易)的识别能力较差。为了解决这个问题,生成对抗网络(GAN)提供了一种有效的手
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 迅为RK3562开发板专为3562编写10大分类2900+页文档
mucheni
rk35623562
iTOP-3562开发板采用瑞芯微RK3562处理器,内部集成了四核A53+MaliG52架构,主频2GHZ,内置1TOPSNPU算力,RK809动态调频。支持OpenGLES1.1/2.0/3.2、0penCL2.0、Vulkan1.1内嵌高性能2D加速硬件。内置独立NPU,算力达1TOPS,可用于轻量级人工智能应用。支持几乎全格式的H.264解码,支持1080p@60fps的解码,支持4K@3
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 透过生活小故事,轻松理解大模型开发的五种核心方法
java
大家好,我是大圣,今天聊一下大模型开发的几种方法。大模型开发常用方法前言人工智能的世界听起来复杂神秘,但其实它与我们的日常生活有着许多相似之处。即使你对大模型开发一无所知,也能通过生活中的简单故事,理解其中的奥秘。本文将以贴近生活的五个场景,通俗易懂地讲解大模型开发中的五种核心方法:提示词工程和外部函数、Agent设计、RAG设计(检索增强生成)、微调以及预训练。让我们一同走进这些故事,揭开大模型
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 文心一言vsGPT-4全面对比
编程小郭
文心一言chatgptjavapython人工智能ai
文心一言和GPT-4都是当前非常先进的人工智能语言模型,它们各自具有独特的特点和优势。以下是对这两款工具的全面比较:文心一言是由百度开发的一款大型人工智能语言模型,它基于强大的深度学习技术和海量的数据资源,具备出色的语言理解和生成能力。文心一言在中文处理方面尤为出色,能够准确理解中文语境和语义,生成流畅、自然的中文文本。文心一言还具备丰富的知识库和推理能力,能够回答各种问题,提供有用的信息和建议。
- 最近,大模型岗位爆了。。。
IT猫仔
人工智能学习ai
重磅消息,国资委打响了国内AI第一枪!宣布央企将把发展AI放在全局统筹地位上,并加快建设一批智能算力中心。这意味着传统行业又迎来了一次大洗牌,这个过程需要大量AI人才!!现在国内头部人工智能公司已经开始用AI数字人助力各行各业,央企+交互数字人将成今年一整年的趋势。除此之外,知名大厂也都在布局AI市场。懂AI的程序员年薪已经翻到80w-96w!风口之下,与其焦虑被行业淘汰,不如先人一步掌握AI大模
- Kimi终于开源了,联手清华开源大模型推理架构Mooncake
吴脑的键客
人工智能架构人工智能
在人工智能迅速发展的时代,大型模型的智能化水平不断提升,但随之而来的推理系统效率挑战也越来越明显。如何应对高推理负载、降低推理成本、缩短响应时间,已成为业界共同面对的重要问题。Kimi公司联合清华大学的MADSys实验室,推出了基于KVCache的Mooncake推理系统设计方案,该方案于2024年6月正式发布。Mooncake推理系统通过创新的PD分离架构和以存换算为中心的理念,显著提升了推理的
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- 人工智能:人形机器人的开发需要哪些技能?
InnoLink_1024
机器学习AGI人工智能人工智能机器人ai
人形机器人的开发需要多学科、多领域的专业技能,具体如下:机械工程技能机械设计与建模:熟练掌握计算机辅助设计(CAD)软件,如SolidWorks、AutoCAD等,能够创建精确的3D模型,进行结构分析,并为制造准备详细的图纸。材料与制造工艺:了解各种材料的性质、接合技术以及制造工艺,如铣削、车削、3D打印等,根据机器人的应用场景和性能要求,选择合适的材料和制造工艺。运动学与动力学分析:深入理解运动
- 人工智能:人形机器人的开发需求会创造哪些热门的就业岗位?
InnoLink_1024
机器学习AGI人工智能人工智能机器人ai
人形机器人的开发需求会创造以下热门的就业岗位:研发设计类机械结构工程师:负责设计人形机器人的机械本体结构,包括关节、骨架、外壳等,需要对机械原理、力学知识有深入理解,熟悉使用CAD、SolidWorks等设计软件。电子电气工程师:设计和开发人形机器人的电子电路系统,包括传感器电路、控制电路、电源电路等,需要掌握电子技术、电路设计、PCB绘制等技能。算法工程师:运动控制算法工程师:负责移动机器人运动
- Python-玩转数据-数据分析之分析思维
人猿宇宙
数据分析pythonbigdata
一、说明当下时代的社会生产发展,人们都开始习惯于用数据来说明某个观点和反映事物的内在规律或享用自动化和人工智能带来的便利。但这些轻松快捷的方便背后,都是相关工作者的专业流程作为源源不断的支撑。二、大数据思维自从几年前大数据开始兴起,大数据思维已经逐渐被更动的人接受,随着其进一步发展,产生了巨大的生产效果。三、数据驱动的生产力作为一个数据工程师,仅仅知道跑数据是不够的,还需要通过数据发现生产环节出现
- 【深入解析】棋类游戏算法:Minimax, Negamax, 蒙特卡洛树搜索与AlphaZero
wit_@
aipythonnegamax
深入解析棋类游戏算法:Minimax,Negamax,蒙特卡洛树搜索与AlphaZero在人工智能领域,棋类游戏一直是测试和展示智能算法的经典舞台。从最早的Minimax算法到如今的AlphaZero,这些算法通过不同的方式解决了棋局中的决策问题,让计算机能够在复杂的棋局中做出合理甚至超越人类的决策。本文将详细解析几种经典的棋类游戏算法:Minimax,Negamax,蒙特卡洛树搜索(MCTS)以
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数