- AI人工智能 语音识别
马里亚纳海沟网
人工智能语音识别python学习运维笔记
AI人工智能构建语音识别器语音识别或自动语音识别(ASR)是AI机器人等AI项目的关注焦点。没有ASR,就不可能想象一个认知机器人与人进行交互。但是,构建语音识别器并不容易。开发语音识别系统的困难开发高质量的语音识别系统确实是一个难题。语音识别技术的困难可以广泛地表征为如下所讨论的许多维度-词汇大小词汇大小影响开发ASR的难易程度。考虑以下词汇量以便更好地理解。例如,在一个语音菜单系统中,一个小词
- 基于Python的智能语音识别系统设计
MATLAB算法工程师Y
python语音识别开发语言
引言语言是人类最原始直接的一种交流方式,通俗易懂、便于理解。随着科技的发展,语言交流不再只存在于人与人之间,如何让机器“听懂”人类的语言并做出反应成为人工智能的重要课题,语音智能交互技术应运而生。作为其中重要一环的语音识别技术近年来不断发展,走出了实验室,随着人工智能进入人们的日常生活中。当今市场上语音识别技术相关的软件、商品涉及人类生活的方方面面,语音识别的实用性已经得到充分的印证。如今语音识别
- 基于python的语音识别系统,Python语音识别技术路线
快乐的小肥熊
ai智能写作python语音识别开发语言cnn
如何用python调用百度语音识别1、首先需要打开百度AI语音系统,开始编写代码,如图所示,编写好回车。2、然后接下来再试一下的音频,开始编写成功回车,如图所示的编写。3、最后,查看音频c的属性,可以看到音频持续28秒,这样就是用python调用百度语音识别成功解决问题。谷歌人工智能写作项目:神经网络伪原创Python语音识别,调用的是哪个客户端接口函数调用腾讯云的语音识别(一句话识别)接口-Py
- Ubuntu 24.04.2 LTS Python 人工智能Ai视觉模型
GHY云端大师
AI训练模型python人工智能
一、创建Python虚拟环境#更新软件包列表,确保你获取到最新版本的可用软件包sudoaptupdate#安装用于创建Python3.10虚拟环境(venv)的相关软件包sudoaptinstallpython3.10-venv-y或sudoaptinstallpython3.12-venv-y#使用Python3创建一个名为"yolov8_env"的虚拟环境python3-mvenvyolo
- 人工智能训练知识学习-TTS(智能语音合成)
笨鸟笃行
人工智能学习
人机对话——TTS(TextToSpeech)概念:TTS技术,即文本转语音技术,是一种将文字内容转换为语音输出的技术。它通过计算机程序和算法,将文本信息转化为自然流畅的语音信号,让用户能够听到文字内容,而无需手动阅读。(即将文本转换为语音输出)TTS技术的工作原理(一)文本预处理当TTS系统接收到一段文本输入时,首先会对文本进行预处理。这包括分词、词性标注、语义理解等操作。例如,在中文文本中,系
- Python 语音识别与语音合成的实现方法
加班不如去钓鱼
python语音识别xcode
```htmlPython语音识别与语音合成的实现方法Python语音识别与语音合成的实现方法随着人工智能技术的发展,语音处理在实际应用中变得越来越重要。Python作为一种功能强大的编程语言,提供了丰富的库和工具来实现语音识别和语音合成的功能。本文将详细介绍如何使用Python实现语音识别与语音合成。一、语音识别语音识别(SpeechRecognition)是将人类的语音转换为文本的过程。Pyt
- 从 MDM 到 Data Fabric:下一代数据架构如何释放 AI 潜能
大卫的 AI 办公摸鱼手册
人工智能与主数据元数据专栏fabric架构人工智能
从MDM到DataFabric:下一代数据架构如何释放AI潜能——传统治理与新兴架构的范式变革与协同进化引言:AI规模化落地的数据困境在人工智能技术快速发展的今天,企业对AI的期望已从“单点实验”转向“规模化落地”。然而,Gartner数据显示,仅有20%的AI项目能够真正实现工业化部署,其核心瓶颈在于数据质量、实时性和治理复杂性。传统主数据管理(MDM)虽能解决基础数据标准化问题,但在应对多源异
- 论“人工智能生命体”站在那个高度?
第一部分:人工智能生命体人工智能生命体,提及的是《人工智能生命体新启点》一书,原文附后,本文中以本书代表。《人工智能生命体新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;具有自我意识的智能生命体就如人类的拥有大脑
- 【Python】车牌自动识别
幽兰的天空
Pythonpythonopencv
实现车牌自动识别(LicensePlateRecognition,LPR)是计算机视觉和深度学习领域中的一个常见任务。用Python和OpenCV,结合其他深度学习库,可以建立一个简单的车牌识别系统。以下是一个基于这两者的基本实现思路和示例代码。实现步骤环境准备:安装必要的库:bashpipinstallopencv-pythonopencv-python-headlessnumpypillowp
- 黑客 vs. 网安:谁才是数字世界的主宰? 2024年信息安全人员应该重点学什么?
网安导师小李
程序员编程网络安全linux运维服务器excelweb安全pythonjava
在当今数字化飞速发展的时代,信息安全问题日益严峻。黑客攻击、数据泄露、网络病毒等威胁不断涌现,企业和个人的隐私安全岌岌可危。随着人工智能、物联网、云计算、区块链等新技术的兴起,信息安全行业正面临着新的挑战和机遇。2024年信息安全行业面临的挑战和机遇**1.人工智能(AI):**AI技术的广泛应用使得攻击者能够利用机器学习和自动化技术进行更具针对性的攻击。例如,恶意软件可以通过AI算法不断自我进化
- Python和OpenCV实现车牌识别的毕业设计案例
媛源啊
本文还有配套的精品资源,点击获取简介:本项目通过Python和OpenCV库,实现了一个实用的车牌识别系统,包含图像捕获、预处理、车牌定位、车牌分割和字符识别等步骤。系统提供了一键运行的完整代码,使学生能够快速掌握计算机视觉和深度学习应用。遇到的挑战和解决方案也进行了讨论,比如光照变化、车牌角度不一致和污损的处理,以及数据增强技术和模型参数优化。1.车牌识别系统的基本理论和应用1.1车牌识别的背景
- PyTorch实战:从零开始构建CIFAR-10图像分类模型 (附详细代码与图解)
电脑能手
pytorch分类人工智能深度学习python
PyTorch实战:从零开始构建CIFAR-10图像分类模型(附详细代码与图解)大家好!今天,我们将一起踏上一段激动人心的深度学习之旅:使用强大的PyTorch框架,从零开始构建一个卷积神经网络(CNN),来解决经典的CIFAR-10图像分类问题。无论你是深度学习的新手,还是希望巩固PyTorch基础知识的开发者,本文都将为你提供一个清晰、详尽的实战指南。本文目标读完本文,你将学会:加载和预处理C
- 机器人工程专业毕设选题推荐
文章目录1前言2如何选题3选题方向2.1嵌入式开发方向2.2物联网方向2.3移动通信方向2.4人工智能方向2.5算法研究方向2.6移动应用开发方向2.7网络通信方向3.4学长作品展示4最后1前言近期不少学弟学妹询问学长关于电子信息工程专业相关的毕设选题,学长特意写下这篇文章以作回应!以下是学长亲手整理的物联网相关的毕业设计选题,都是经过学长精心审核的题目,适合作为毕设,难度不高,工作量达标,对毕设
- Day44
1.预训练概念:在大规模数据上训练模型学习通用知识,再迁移到下游任务微调2.常见模型:图像有AlexNet、ResNet、ViT;NLP有BERT、GPT3.图像模型发展:从手工特征到深度学习,从CNN到Transformer、多模态4.预训练策略:数据增强、自监督/监督训练、模型微调、多模态学习作业1.importtorchimporttorch.nnasnnimporttorch.optima
- 飞算JavaAI:AI赋能的Java开发助手
山峰哥
人工智能java开发语言数据库信息可视化人机交互
『AI先锋杯·14天征文挑战第一期』AI技术如何重塑你的工作与行业?一、前言在2025年人工智能技术爆发的时代,开发者的工作方式正经历着革命性变革。智能编码工具已经从简单的代码补全进化到能够理解复杂需求、生成完整工程的能力。本文将深入分析国产Java开发助手飞算JavaAI如何通过自然语言交互彻底改变传统开发流程,并结合电商系统、金融交易引擎等实战案例,验证其在实际项目中的生产力提升效果。二、飞算
- 当AI邂逅新能源:Java如何重构能源未来
当AI邂逅新能源:Java如何重构能源未来在阿联酋阿布扎比的沙漠深处,一座由AI驱动的“全景式数字指挥中心”正实时监控着2000公里外的海上油田。通过深度学习算法预测设备故障、优化钻井路径,这座由阿布扎比国家石油公司打造的智能中枢,每年减少100万吨碳排放,创造价值5亿美元。而在中国南方,全球首个大规模抽水蓄能AI数据分析平台,正让百年历史的电站群焕发新生——7座电站、34台机组实现90%人工巡检
- AI人工智能代理工作流AI Agent WorkFlow:高并发场景下AI代理的性能调优
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:高并发场景下AI代理的性能调优关键词:AI代理,工作流,性能调优,高并发,分布式系统,资源管理,负载均衡1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,AI代理(AIAgents)在各个领域的应用越来越广泛。AI代理作为自动化、智能化的执行实体,能够模拟人类智能行为,完成复杂的任务。在高并发场景下,例如在线服务、金融服务、智能城市等,A
- 解锁阿里云文字识别OCR:开启智能文本处理新时代
阿里云OCR:技术先锋登场在数字化转型的汹涌浪潮中,海量文本数据如潮水般涌来,如何高效处理这些文本,成为众多企业和开发者面临的关键挑战。阿里云文字识别OCR,作为一款强大的人工智能技术,应运而生,宛如一位英勇的先锋,为我们开辟了一条高效处理文本的光明大道。它能够精准地将图片、扫描件中的文字转化为可编辑的文本,极大地提高了信息处理的效率和准确性,在众多领域中发挥着不可或缺的重要作用。探秘阿里云OCR
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- 大规模预训练语言模型的参数高效微调
人工智能咨询培训老师叶梓转载标明出处大规模预训练语言模型(PLMs)在特定下游任务上的微调和存储成本极高,这限制了它们在实际应用中的可行性。为了解决这一问题,来自清华大学和北京人工智能研究院的研究团队探索了一种优化模型中一小部分参数的方法,同时保持其他参数不变,以大幅降低计算和存储成本。研究团队提出了“delta-tuning”这一概念,将优化的参数部分称为“delta”,即在训练过程中被“改变”
- 大语言模型应用提示工程Prompt Engineering
全栈你个大西瓜
人工智能大模型自然语言处理prompt人工智能提示工程
提示工程(PromptEngineering)是指通过精心设计和优化输入提示(prompt),以引导人工智能模型(如大型语言模型)生成更符合预期的输出。一、提示工程的核心任务明确任务目标确定模型需要完成的具体任务(如文本生成、翻译、分类、问答等)。示例:需要模型生成一篇产品评测vs.需要模型总结文章要点。设计提示结构包含必要的上下文、示例、格式要求和约束条件。示例:请根据以下产品参数生成一段吸引人
- 探索提示词工程的魅力:提升你的AI应用到新高度
杭律沛Meris
探索提示词工程的魅力:提升你的AI应用到新高度Prompt-Engineering-Guide-zh项目地址:https://gitcode.com/gh_mirrors/pr/Prompt-Engineering-Guide-zh在人工智能的快速发展前沿,提示词工程指南-中文版犹如一盏明灯,照亮了语言模型应用的新路径。本项目是由PartnerDAO精心翻译并维护,旨在构建一个全面的知识库,帮助开
- Prompt Engineering Guide — 提示工程全方位指南
司南锤
GitHubprompt
项目概述PromptEngineeringGuide是一个由DAIRAILab维护的开源项目,致力于系统性地总结和分享提示工程(PromptEngineering)的理论与实践方法。随着大语言模型(如GPT系列、Claude、Gemini等)的广泛应用,如何设计有效提示以发挥模型最大能力,成为当前人工智能领域的重要研究和应用方向。该项目以教程、案例和最佳实践为核心,帮助开发者和研究者快速掌握提示设
- OpenCV图像边缘检测
慕婉0307
opencv基础opencv人工智能计算机视觉
一、边缘检测基础概念边缘检测是图像处理中最基本也是最重要的操作之一,它能识别图像中亮度或颜色急剧变化的区域,这些区域通常对应物体的边界。OpenCV提供了多种边缘检测方法,从传统的算子到基于深度学习的现代方法。1.1为什么需要边缘检测?数据降维:将图像转换为边缘表示可大幅减少数据量特征提取:边缘是图像最重要的视觉特征之一预处理步骤:为物体识别、图像分割等高级任务做准备噪声抑制:某些边缘检测方法具有
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- AI产品经理技术篇:AI领域常用术语解析
让我看看好学吗
人工智能产品经理机器学习深度学习学习
作为AI产品经理,深入理解人工智能领域的核心术语是高效沟通、需求定义和产品落地的关键。无论是与算法工程师协作优化模型,还是向业务方解释技术方案,准确掌握专业术语能显著提升决策效率,避免因概念混淆导致的开发偏差。本文系统梳理了模型与算法、NLP(自然语言处理)、CV(计算机视觉)、数据处理、核心评估指标等领域的核心术语,帮助产品经理快速构建AI技术认知框架。目录1.基础概念2.模型与算法3.自然语言
- 元宇宙养老社区:数字化照护的创新实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战AI人工智能与大数据大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《元宇宙养老社区:数字化照护的创新实践》关键词元宇宙养老社区数字化照护虚拟现实人工智能大数据物联网摘要本文深入探讨了元宇宙养老社区的概念、技术架构及其在数字化照护中的应用。通过分析虚拟现实、人工智能、大数据和物联网等核心技术,本文详细阐述了元宇宙养老社区的架构设计、项目实施、运营管理与用户体验优化。同时,本文还展望了元宇宙养老社区的潜在市场、技术发展趋势以及未来挑战与机遇。文章目录《元宇宙养老社区
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎
SuperAGI2025
AI大模型应用开发宝典AIGCai
AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎关键词:AIGC、MCP模型、上下文协议、数字化转型、人工智能、内容生成、语义理解摘要:本文深入探讨AIGC(人工智能生成内容)领域的MCP(多模态上下文感知)模型及其上下文协议,揭示其如何成为推动行业数字化转型的新引擎。我们将从基础概念出发,逐步解析MCP模型的技术原理、实现方法和应用场景,并通过实际案例展示其在各行业的创新应用。文章还
- Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
看透一个顶级AI句向量模型的设计秘密,从文件结构到加载原理,再到其背后的训练哲学。1Qwen3-Embedding模型结构拆解说明:目录包含了运行一个基于Transformer的句向量模型所需的所有组件文件类别核心文件作用核心模型model.safetensors,config.jsonmodel.safetensors存储了模型所有训练好的权重分词器tokenizer.json,vocab.js
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR