使用经典的 IMDB 影评数据集来完成情感分类任务。 IMDB 影评数据集包含了50000 条用户评价,评价的标签分为消极和积极, 其中 IMDB 评级<5 的用户评价标注为0,即消极; IMDB 评价>=7 的用户评价标注为 1,即积极。 25000 条影评用于训练集,25,000 条用于测试集
# 加载IMDB数据集,数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape) # (25000,) 218 (25000,)
print(x_test.shape, len(x_test[0]), y_test.shape) # (25000,) 68 (25000,)
# 截断和填充句子,使得等长为max_review_len,此处长句子保留后面部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
# 构建数据集,打散,批量,并丢掉最后一个不够batches的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batches, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batches, drop_remainder=True)
print('db_train:', db_train) # db_train:
通过Keras提供的数据集datasets可以从网上加载IMDB数据集,该数据集一共50000条用户评价,一半用于训练,另一半用于测试。x_train 和 x_test 是长度为 25,000 的一维数组,数组的每个元素是不定长 List,保存了数字编码的每个句子,例如训练集的第一个句子共有 218 个单词,测试集的第一个句子共有 68 个单词,每个句子都包含了句子起始标志 ID。
对于长度参差不齐的句子,设置一个阈值,对大于此长度的句子,选择截断部分单词,可以选择截去句首单词,也可以截去句末单词;对于小于此长度的句子,可以选择在句首或句尾填充,句子截断功能可以通过 keras.preprocessing.sequence.pad_sequences()函数实现
截断或填充为相同长度后,通过 Dataset 类包裹成数据集对象,并添加常用的数据集处理流程,比如数据集批量化,打散,当最后一批数据集不满足一个batch将其丢弃。
自定义网络模型类MyRNN: Embedding层-->两个RNN层-->分类层网络
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# 词向量编码 [b,80] ==> [b,80,100]
# embedding_len:单词向量的长度,total_words:词汇的数量 max_review_len:输入句子长度
self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
# 构建2个Cell [b,80,100] => [b,64]
self.rnn = Sequential([
layers.SimpleRNN(units, dropout=0.5, return_sequences=True),
layers.SimpleRNN(units, dropout=0.5)
])
# 构建分类网络,用于将Cell的输出特征进行分类,2分类
# [b,64]=> [b,1]
self.outlayer = Sequential([
layers.Dense(units),
layers.Dropout(rate=0.5),
layers.ReLU(),
layers.Dense(1)
])
# 向前计算
def call(self, inputs, training=None):
x = inputs # [b,80]
# embedding: [b,80] ==> [b,80, 100]
x = self.embedding(x)
# rnn cell compute: [b, 80,100] => [b,64]
out1 = self.rnn(x)
# 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
x = self.outlayer(out1, training)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
Embedding层作用:把单词编码为某个词向量,它接受采用数字编码的单词编号,是可训练的
RNN层:每层都需要上一层在每个时间戳上面的状态输出,因此除了最末层以外,所有的 RNN 层都需要返回每个时间戳上面的状态输出,通过设置 return_sequences=True 来实现,用做下一层的输入,dropout用于优化网络性能:减少层与层之间的连接
分类网络完成 2 分类任务,故输出节点设置为 1。输入序列通过 Embedding 层完成词向量编码, 循环通过两个 RNN层,提取语义特征,取最后一层的最后时间戳的状态向量输出送入分类网络,经过Sigmoid 激活函数后得到输出概率
通过Cell方式:
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64],构建Cell初始化状态向量,重复使用
self.state0 = [tf.zeros([batches, units])]
self.state1 = [tf.zeros([batches, units])]
# 词向量编码 [b,80] ==> [b,80,100]
self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
# 构建2个Cell
self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5) # dropout 减少连接
self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
# 构建分类网络,用于将Cell的输出特征进行分类,2分类
# [b,80,100] => [b,64]=> [b,1]
self.outlayer = Sequential([
layers.Dense(units),
layers.Dropout(rate=0.5),
layers.ReLU(),
layers.Dense(1)
])
# 向前计算
def call(self, inputs, training=None):
x = inputs # [b,80]
# embedding: [b,80] ==> [b,80, 100]
x = self.embedding(x)
# rnn cell compute: [b, 80,100] => [b,64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1): # word: [b,100] 从时间维度展开
out0, state0 = self.rnn_cell0(word, state0, training)
out1, state1 = self.rnn_cell1(out0, state1, training)
# 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
x = self.outlayer(out1, training)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
需要自己实现向前计算,并且维护各个RNN层的初始状态向量,其他都是一样的
model = MyRNN(units)
# 装配优化器,学习率,测量器
model.compile(optimizer=optimizers.Adam(1e-3),
loss=losses.BinaryCrossentropy(),
metrics=['accuracy'])
在完成网络模型的搭建后,需要指定网络使用的优化器对象、 损失函数类型, 评价指标等设定,这一步称为装配 为了简便, 这里使用 Keras 的 Compile&Fit 方式训练网络,设置优化器为 Adam 优
# 训练 与 验证 validation_data:验证数据
model.fit(db_train, epochs=epochs, validation_data=db_test)
# 测试
model.evaluate(db_test)
这里使用 Keras 的 Compile&Fit 方式训练网络,设置好优化器,学习率,误差函数测试指标(采用准确率),之间利用fit()喂入数据集和测试集即可训练
结果: 训练了近30个epoch
只需要修改网络模型一处即可:修改网络层类型即可
# 构建rnn
self.rnn = Sequential([
layers.LSTM(units, dropout=0.5, return_sequences=True),
layers.LSTM(units, dropout=0.5)
])
结果:LSTM明显效果比RNN好一点
只需要修改网络模型一处即可:修改网络层类型即可
# 构建rnn
self.rnn = Sequential([
layers.GRU(units, dropout=0.5, return_sequences=True),
layers.GRU(units, dropout=0.5)
])
结果:也稍微比SampleRNN好:
# -*- codeing = utf-8 -*-
# @Time : 10:20
# @Author:Paranipd
# @File : imdb_rnn_cell.py
# @Software:PyCharm
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, Model, layers, metrics, optimizers, losses
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2')
batches = 128 # 批量大小
total_words = 10000 # 词汇表大小N_vocad
max_review_len = 80 # 句子的最大长度s,大于的部分将截断,小于的将填充
embedding_len = 100 # 词向量特征长度
# 加载IMDB数据集,数据采用数字编码,一个数字代表一个单词
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
print(x_train.shape, len(x_train[0]), y_train.shape) # (25000,) 218 (25000,)
print(x_test.shape, len(x_test[0]), y_test.shape) # (25000,) 68 (25000,)
# 截断和填充句子,使得等长为max_review_len,此处长句子保留后面部分,短句子在前面填充
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
# 构建数据集,打散,批量,并丢掉最后一个不够batches的batch
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batches, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batches, drop_remainder=True)
print('db_train:', db_train) # db_train:
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# 词向量编码 [b,80] ==> [b,80,100]
# embedding_len:单词向量的长度,total_words:词汇的数量 max_review_len:输入句子长度
self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
# 构建2个Cell [b,80,100] => [b,64]
self.rnn = Sequential([
layers.SimpleRNN(units, dropout=0.5, return_sequences=True),
layers.SimpleRNN(units, dropout=0.5)
])
# 构建分类网络,用于将Cell的输出特征进行分类,2分类
# [b,64]=> [b,1]
self.outlayer = Sequential([
layers.Dense(units),
layers.Dropout(rate=0.5),
layers.ReLU(),
layers.Dense(1)
])
# 向前计算
def call(self, inputs, training=None):
x = inputs # [b,80]
# embedding: [b,80] ==> [b,80, 100]
x = self.embedding(x)
# rnn cell compute: [b, 80,100] => [b,64]
out1 = self.rnn(x)
# 末层最后一个输出作为分类网络的输入: [b, 64] => [b, 1]
x = self.outlayer(out1, training)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64 # rnn状态向量长度
epochs = 50
model = MyRNN(units)
# 装配优化器,学习率,测量器
model.compile(optimizer=optimizers.Adam(1e-3),
loss=losses.BinaryCrossentropy(),
metrics=['accuracy'])
# 训练 与 验证 validation_data:验证数据
model.fit(db_train, epochs=epochs, validation_data=db_test)
# 测试
model.evaluate(db_test)
if __name__ == '__main__':
main()