python+mediapip 实现AI姿态检测健身姿态检测追踪项目

python+mediapip 实现AI姿态检测健身姿态检测追踪项目

最近研究mediapipe 这个东东,感觉有点意思,有点上瘾。如果实现了姿态检测,那么我们可以用这些姿态检测的坐标做一下项目了,比如说,如何检测健身举哑铃的动作检测,虽然功能十分简单,但是要用Python 去实现一个动作的检测,在代码层次来讲还是很繁琐的。 下面讲解一下如何使用python+opencv+mediapipe实现姿态检测,并对举哑铃这个动作进行识别。

要实现上面所说的功能,需要实现以下步骤,下面我们一步一步的实现下面的步骤,以完成整个的功能。

  1. Install and Import Dependencies
  2. Make Detections
  3. Determining Joints
  4. Calculate Angles
  5. Curl Counter

1. Install and Import Dependencies

首先是运行环境的检测, 要看下你的mediapipe 与opencv-python 依赖是成功安装,并且摄像头能成功的采集到你的那张帅脸,如果这些都没有问题,那么就可以进行下面的操作了。

pip install mediapipe opencv-python
import cv2
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# VIDEO FEED
cap = cv2.VideoCapture(0)
while cap.isOpened():
    ret, frame = cap.read()
    cv2.imshow('Mediapipe Feed', frame)
    
    if cv2.waitKey(10) & 0xFF == ord('q'):
        break
        
cap.release()
cv2.destroyAllWindows()

2. Make Detections

cap = cv2.VideoCapture(0)
## Setup mediapipe instance
## 开启我们的姿态检测进程函数,这里有两个指标检测置信度和跟踪置信度,作用是控制模型检测的准确度和灵敏度
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
    while cap.isOpened():
        ret, frame = cap.read()
        
        # Recolor image to RGB
        ## 摄像投的数据都是以BGR的形式,但是模型处理要以RGB,所以这里的颜色空间要进行转换
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
      
        # Make detection
        results = pose.process(image)
    
        # Recolor back to BGR
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        
        # Render detections
        ##然后进行画点和连线的操作了
        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
                                mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), 
                                mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) 
                                 )               
        
        cv2.imshow('Mediapipe Feed', image)

        if cv2.waitKey(10) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

代码的功能我基本上已经在注释中阐述明白了, 完成了上面的步骤,那么基本上就能够检测到你的姿态的模型了。
python+mediapip 实现AI姿态检测健身姿态检测追踪项目_第1张图片

3.Determining Joints

下图是姿态检测模型中的33个关节点,我们会获取所需要的关节点的坐标,然后进行算法的计算,以达到我们所需的功能需求。下面我会获取我们的其中的关节坐标,然后计算肘部关节的角度,
python+mediapip 实现AI姿态检测健身姿态检测追踪项目_第2张图片

        # Extract landmarks
        try:
            landmarks = results.pose_landmarks.landmark
            print(landmarks)
        except:
            pass

我们可以添加两行代码将我们每一个坐标点打出来看一下
python+mediapip 实现AI姿态检测健身姿态检测追踪项目_第3张图片可以看到,每个关节的坐标点都可以获取到。
另外,还可以用以下代码验证有多少个关节点,以及是哪一个关节点。

print(len(landmarks))

33

for lndmrk in mp_pose.PoseLandmark:
	print(lndmrk)

PoseLandmark.NOSE
PoseLandmark.LEFT_EYE_INNER
PoseLandmark.LEFT_EYE
PoseLandmark.LEFT_EYE_OUTER
PoseLandmark.RIGHT_EYE_INNER
PoseLandmark.RIGHT_EYE
PoseLandmark.RIGHT_EYE_OUTER
PoseLandmark.LEFT_EAR
PoseLandmark.RIGHT_EAR
PoseLandmark.MOUTH_LEFT
PoseLandmark.MOUTH_RIGHT
PoseLandmark.LEFT_SHOULDER
PoseLandmark.RIGHT_SHOULDER
PoseLandmark.LEFT_ELBOW
PoseLandmark.RIGHT_ELBOW
PoseLandmark.LEFT_WRIST
PoseLandmark.RIGHT_WRIST
PoseLandmark.LEFT_PINKY
PoseLandmark.RIGHT_PINKY
PoseLandmark.LEFT_INDEX
PoseLandmark.RIGHT_INDEX
PoseLandmark.LEFT_THUMB
PoseLandmark.RIGHT_THUMB
PoseLandmark.LEFT_HIP
PoseLandmark.RIGHT_HIP
PoseLandmark.LEFT_KNEE
PoseLandmark.RIGHT_KNEE
PoseLandmark.LEFT_ANKLE
PoseLandmark.RIGHT_ANKLE
PoseLandmark.LEFT_HEEL
PoseLandmark.RIGHT_HEEL
PoseLandmark.LEFT_FOOT_INDEX
PoseLandmark.RIGHT_FOOT_INDEX

landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].visibility
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value]
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value]

4. Calculate Angles

接下来 我们获取到了坐标,那么就需要用坐标计算出我们胳膊的角度了,用来判断是否有举哑铃这个动作。

def calculate_angle(a,b,c):
    a = np.array(a) # First
    b = np.array(b) # Mid
    c = np.array(c) # End
    
    radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
    angle = np.abs(radians*180.0/np.pi)
    
    if angle >180.0:
        angle = 360-angle
        
    return angle 

上面,就是用于计算坐标的Fun, 角度范围0-180。
如何获取我们所需要的左边呢?

shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]

获取函数所需的坐标点。
然后看整体代码

cap = cv2.VideoCapture(0)
## Setup mediapipe instance
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
    while cap.isOpened():
        ret, frame = cap.read()
        
        # Recolor image to RGB
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
      
        # Make detection
        results = pose.process(image)
    
        # Recolor back to BGR
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        
        # Extract landmarks
        try:
            landmarks = results.pose_landmarks.landmark
            
            # Get coordinates
            shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
            elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
            wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
            
            # Calculate angle
            angle = calculate_angle(shoulder, elbow, wrist)
            
            # Visualize angle
            cv2.putText(image, str(angle), 
                           tuple(np.multiply(elbow, [640, 480]).astype(int)), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
                                )
                       
        except:
            pass
        
        
        # Render detections
        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
                                mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), 
                                mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) 
                                 )               
        
        cv2.imshow('Mediapipe Feed', image)

        if cv2.waitKey(10) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

python+mediapip 实现AI姿态检测健身姿态检测追踪项目_第4张图片
角度基本上也没有问题了。

5.Curl Counter

那么就是最后一步了,为了实现举哑铃这个动作的检测,实现一个计数器的功能是最基本的。

cap = cv2.VideoCapture(0)

# Curl counter variables
counter = 0 
stage = None

## Setup mediapipe instance
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
    while cap.isOpened():
        ret, frame = cap.read()
        
        # Recolor image to RGB
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
      
        # Make detection
        results = pose.process(image)
    
        # Recolor back to BGR
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        
        # Extract landmarks
        try:
            landmarks = results.pose_landmarks.landmark
            
            # Get coordinates
            shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
            elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
            wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
            
            # Calculate angle
            angle = calculate_angle(shoulder, elbow, wrist)
            
            # Visualize angle
            cv2.putText(image, str(angle), 
                           tuple(np.multiply(elbow, [640, 480]).astype(int)), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
                                )
            
            # Curl counter logic
            if angle > 160:
                stage = "down"
            if angle < 30 and stage =='down':
                stage="up"
                counter +=1
                print(counter)
                       
        except:
            pass
        
        # Render curl counter
        # Setup status box
        cv2.rectangle(image, (0,0), (225,73), (245,117,16), -1)
        
        # Rep data
        cv2.putText(image, 'REPS', (15,12), 
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
        cv2.putText(image, str(counter), 
                    (10,60), 
                    cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2, cv2.LINE_AA)
        
        # Stage data
        cv2.putText(image, 'STAGE', (65,12), 
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
        cv2.putText(image, stage, 
                    (60,60), 
                    cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2, cv2.LINE_AA)
        
        
        # Render detections
        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
                                mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), 
                                mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) 
                                 )               
        
        cv2.imshow('Mediapipe Feed', image)

        if cv2.waitKey(10) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

python+mediapip 实现AI姿态检测健身姿态检测追踪项目_第5张图片

感兴趣的朋友赶紧去试试吧,不停奥利给,看看计数多少个奥利给!

你可能感兴趣的:(OpenCV,Python,其他,python,opencv,mediapipe,机器学习,ai)