权重衰退实验(李沐动手学)

import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
    w=torch.normal(0,1,(num_inputs,1),requires_grad=True)
    b=torch.zeros(1,requires_grad=True)
    return [w,b]
def l2_penalty(w):
    return torch.sum(w.pow(2))/2

def train(lambd):

    num_epochs=100
    lr=0.01
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])

    w,b=init_params()
    net=lambda X:d2l.linreg(X,w,b)
    loss=d2l.squared_loss
    for epoch in range(num_epochs):
        for X,y in train_iter:
            l=loss(net(X),y)+float(lambd)*l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w,b],lr,batch_size)
        if (epoch+1)%5==0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))

    print("w的l2范数是:",torch.norm(w).item())

train(lambd=0)
train(lambd=3)
plt.show()

权重衰退实验(李沐动手学)_第1张图片无权重衰退
权重衰退实验(李沐动手学)_第2张图片有权重衰退

简洁实现:

import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def train_concise(wd):
    net=nn.Sequential(nn.Linear(num_inputs,1))
    for param in net.parameters():
        param.data.normal_()
    loss=nn.MSELoss()
    num_epochs,lr=100,0.01
    trainer=torch.optim.SGD(
        [{"params":net[0].weight,"weight_decay":wd}, {"params":net[0].bias}],lr=lr
    )
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X,y in train_iter:
            trainer.zero_grad()
            l=loss(net(X),y)
            l.backward()
            trainer.step()

        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)

train_concise(3)
plt.show()

权重衰退实验(李沐动手学)_第3张图片
权重衰退实验(李沐动手学)_第4张图片

你可能感兴趣的:(深度学习,pytorch,深度学习,权重衰减)