import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def init_params():
w=torch.normal(0,1,(num_inputs,1),requires_grad=True)
b=torch.zeros(1,requires_grad=True)
return [w,b]
def l2_penalty(w):
return torch.sum(w.pow(2))/2
def train(lambd):
num_epochs=100
lr=0.01
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
w,b=init_params()
net=lambda X:d2l.linreg(X,w,b)
loss=d2l.squared_loss
for epoch in range(num_epochs):
for X,y in train_iter:
l=loss(net(X),y)+float(lambd)*l2_penalty(w)
l.sum().backward()
d2l.sgd([w,b],lr,batch_size)
if (epoch+1)%5==0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print("w的l2范数是:",torch.norm(w).item())
train(lambd=0)
train(lambd=3)
plt.show()
简洁实现:
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
def train_concise(wd):
net=nn.Sequential(nn.Linear(num_inputs,1))
for param in net.parameters():
param.data.normal_()
loss=nn.MSELoss()
num_epochs,lr=100,0.01
trainer=torch.optim.SGD(
[{"params":net[0].weight,"weight_decay":wd}, {"params":net[0].bias}],lr=lr
)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X,y in train_iter:
trainer.zero_grad()
l=loss(net(X),y)
l.backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)
train_concise(3)
plt.show()