我们可以先思考一下业务场景的解决方案:
以上业务场景的解决方案就是任务调度。
任务调度是指系统为了自动完成特定任务,在约定的特定时刻去执行任务的过程。有了任务调度即可解放更多的人力,而是由系统自动去执行任务。
如何实现任务调度?
但是上述这些解决方案要么实现起来比较繁琐,要么不能满足分布式架构需求,我们需要更好的解决方案。
入门案例
spring-task为spring框架自带的定时任务模块
1快速构建创程spring-task-demo
2启动类上加注解 @EnableScheduling
3创建定时任务类
package com.example.demo.job;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import java.util.Date;
@Component
public class HelloJob {
@Scheduled(cron = "0/5 * * * * *")
public void task(){
System.out.println("干活了!"+new Date());
}
}
4启动程序
cron表达式是一个字符串, 用来设置定时规则, 由七部分组成, 每部分中间用空格隔开, 每部分的含义如下表所示:
组成部分 | 含义 | 取值范围 |
---|---|---|
第一部分 | Seconds (秒) | 0-59 |
第二部分 | Minutes(分) | 0-59 |
第三部分 | Hours(时) | 0-23 |
第四部分 | Day-of-Month(天) | 1-31 |
第五部分 | Month(月) | 0-11或JAN-DEC |
第六部分 | Day-of-Week(星期) | 1-7(1表示星期日)或SUN-SAT |
第七部分 | Year(年) 可选 | 1970-2099 |
另外, cron表达式还可以包含一些特殊符号来设置更加灵活的定时规则, 如下表所示:
符号 | 含义 |
---|---|
? | 表示不确定的值。当两个子表达式其中一个被指定了值以后,为了避免冲突,需要将另外一个的值设为“?”。例如:想在每月20日触发调度,不管20号是星期几,只能用如下写法:0 0 0 20 * ?,其中最后以为只能用“?” |
* | 代表所有可能的值 |
, | 设置多个值,例如”26,29,33”表示在26分,29分和33分各自运行一次任务 |
- | 设置取值范围,例如”5-20”,表示从5分到20分钟每分钟运行一次任务 |
/ | 设置频率或间隔,如"1/15"表示从1分开始,每隔15分钟运行一次任务 |
L | 用于每月,或每周,表示每月的最后一天,或每个月的最后星期几,例如"6L"表示"每月的最后一个星期五" |
W | 表示离给定日期最近的工作日,例如"15W"放在每月(day-of-month)上表示"离本月15日最近的工作日" |
# | 表示该月第几个周X。例如”6#3”表示该月第3个周五 |
为了让大家更熟悉cron表达式的用法, 接下来我们给大家列举了一些例子, 如下表所示:
cron表达式 | 含义 |
---|---|
*/5 * * * * ? | 每隔5秒运行一次任务 |
0 0 23 * * ? | 每天23点运行一次任务 |
0 0 1 1 * ? | 每月1号凌晨1点运行一次任务 |
0 0 23 L * ? | 每月最后一天23点运行一次任务 |
0 26,29,33 * * * ? | 在26分、29分、33分运行一次任务 |
0 0/30 9-17 * * ? | 朝九晚五工作时间内每半小时运行一次任务 |
0 15 10 ? * 6#3 | 每月的第三个星期五上午10:15运行一次任务 |
当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度。
将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:
1、并行任务调度
并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。
如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。
2、高可用
若某一个实例宕机,不影响其他实例来执行任务。
3、弹性扩容
当集群中增加实例就可以提高并执行任务的处理效率。
4、任务管理与监测
对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。
分布式任务调度面临的问题:
当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:
针对分布式任务调度的需求,市场上出现了很多的产品:
1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。
2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。
4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监
控,具有任务高可用以及分片功能。
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
源码地址:https://gitee.com/xuxueli0323/xxl-job
文档地址:https://www.xuxueli.com/xxl-job/
特性
在分布式架构下,通过XXL-Job实现定时任务
源码仓库地址 | Release Download |
---|---|
https://github.com/xuxueli/xxl-job | Download |
http://gitee.com/xuxueli0323/xxl-job | Download |
也可以使用资料文件夹中的源码
请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。
位置:/xxl-job/doc/db/tables_xxl_job.sql
共8张表
调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;
如果mysql做主从,调度中心集群节点务必强制走主库;
解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:
调度中心项目:xxl-job-admin
作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。
步骤一:调度中心配置
调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties
数据库的连接信息修改为自己的数据库
### web
server.port=8888
server.servlet.context-path=/xxl-job-admin
### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false
### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/
### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########
### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model
### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?Unicode=true&serverTimezone=Asia/Shanghai&characterEncoding=UTF-8
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
[email protected]
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
### xxl-job, access token
xxl.job.accessToken=
### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN
## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100
### xxl-job, log retention days
xxl.job.logretentiondays=30
步骤二:部署项目
如果已经正确进行上述配置,可将项目编译打包部署。
启动方式一:这是一个springboot项目,可以在idea中直接启动,不推荐使用
启动方式二:
java -jar xxl-job-admin-2.2.0-SNAPSHOT.jar
调度中心访问地址:http://localhost:8888/xxl-job-admin (该地址执行器将会使用到,作为回调地址)
默认登录账号 “admin/123456”, 登录后运行界面如下图所示。
至此“调度中心”项目已经部署成功。
在任务管理->新建,填写以下内容
执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能; 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器, 可在 “执行器管理” 进行设置
任务描述:任务的描述信息,便于任务管理
路由策略:当执行器集群部署时,提供丰富的路由策略,包括
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询):
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久为使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
Cron:触发任务执行的Cron表达式;
运行模式:
BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 “JobHandler” 属性匹配执行器中任务;
GLUE模式(Java):任务以源码方式维护在调度中心;该模式的任务实际上是一段继承自IJobHandler的Java类代码并 “groovy” 源码方式维护,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务;
GLUE模式(Shell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “shell” 脚本;
GLUE模式(Python):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “python” 脚本;
GLUE模式(PHP):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “php” 脚本;
GLUE模式(NodeJS):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “nodejs” 脚本;
GLUE模式(PowerShell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “PowerShell” 脚本;
JobHandler:运行模式为 “BEAN模式” 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值;
阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。
任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔;
负责人:任务的负责人;
执行参数:任务执行所需的参数;
新建项目:xxl-job-demo
(1)pom文件
<groupId>com.itzglgroupId>
<artifactId>xxl-job-demoartifactId>
<version>1.0-SNAPSHOTversion>
<parent>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-parentartifactId>
<version>2.1.5.RELEASEversion>
parent>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webartifactId>
dependency>
<dependency>
<groupId>com.xuxueligroupId>
<artifactId>xxl-job-coreartifactId>
<version>2.2.0-SNAPSHOTversion>
dependency>
dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-maven-pluginartifactId>
plugin>
plugins>
build>
(2)配置有两个,一个是application.properties,另外一个是日志配置:logback.xml
application.properties
# web port
server.port=${port:8801}
# no web
#spring.main.web-environment=false
# log config
logging.config=classpath:logback.xml
### xxl-job admin address list, such as "http://address" or "http://address01,http://address02"
xxl.job.admin.addresses=http://localhost:8888/xxl-job-admin
### xxl-job, access token
xxl.job.accessToken=
### xxl-job executor appname
xxl.job.executor.appname=xxl-job-executor-sample1
### xxl-job executor registry-address: default use address to registry , otherwise use ip:port if address is null
xxl.job.executor.address=
### xxl-job executor server-info
xxl.job.executor.ip=
xxl.job.executor.port=${executor.port:9999}
### xxl-job executor log-path
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### xxl-job executor log-retention-days
xxl.job.executor.logretentiondays=30
logback.xml
<configuration debug="false" scan="true" scanPeriod="1 seconds">
<contextName>logbackcontextName>
<property name="log.path" value="/data/applogs/xxl-job/xxl-job-executor-sample-springboot.log"/>
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d{HH:mm:ss.SSS} %contextName [%thread] %-5level %logger{36} - %msg%npattern>
encoder>
appender>
<appender name="file" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${log.path}file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${log.path}.%d{yyyy-MM-dd}.zipfileNamePattern>
rollingPolicy>
<encoder>
<pattern>%date %level [%thread] %logger{36} [%file : %line] %msg%n
pattern>
encoder>
appender>
<root level="info">
<appender-ref ref="console"/>
<appender-ref ref="file"/>
root>
configuration>
(3)引导类:
package com.itzgl.xxljob;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class XxlJobApplication {
public static void main(String[] args) {
SpringApplication.run(XxlJobApplication.class,args);
}
}
添加配置类:
这个类主要是创建了任务执行器,参考官方案例编写,无须改动
package com.itzgl.xxljob.config;
import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* xxl-job config
*
* @author xuxueli 2017-04-28
*/
@Configuration
public class XxlJobConfig {
private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
@Value("${xxl.job.admin.addresses}")
private String adminAddresses;
@Value("${xxl.job.accessToken}")
private String accessToken;
@Value("${xxl.job.executor.appname}")
private String appName;
@Value("${xxl.job.executor.address}")
private String address;
@Value("${xxl.job.executor.ip}")
private String ip;
@Value("${xxl.job.executor.port}")
private int port;
@Value("${xxl.job.executor.logpath}")
private String logPath;
@Value("${xxl.job.executor.logretentiondays}")
private int logRetentionDays;
@Bean
public XxlJobSpringExecutor xxlJobExecutor() {
logger.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppName(appName);
xxlJobSpringExecutor.setAddress(address);
xxlJobSpringExecutor.setIp(ip);
xxlJobSpringExecutor.setPort(port);
xxlJobSpringExecutor.setAccessToken(accessToken);
xxlJobSpringExecutor.setLogPath(logPath);
xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
return xxlJobSpringExecutor;
}
/**
* 针对多网卡、容器内部署等情况,可借助 "spring-cloud-commons" 提供的 "InetUtils" 组件灵活定制注册IP;
*
* 1、引入依赖:
*
* org.springframework.cloud
* spring-cloud-commons
* ${version}
*
*
* 2、配置文件,或者容器启动变量
* spring.cloud.inetutils.preferred-networks: 'xxx.xxx.xxx.'
*
* 3、获取IP
* String ip_ = inetUtils.findFirstNonLoopbackHostInfo().getIpAddress();
*/
}
package com.itzgl.xxljob.job;
import com.xxl.job.core.biz.model.ReturnT;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import java.time.LocalDateTime;
@Component
public class HelloJob {
@Value("${server.port}")
private String appPort;
@XxlJob("helloJob")
public ReturnT<String> hello(String param) throws Exception {
System.out.println("helloJob:"+ LocalDateTime.now()+",端口号"+appPort);
return ReturnT.SUCCESS;
}
}
@XxlJob("helloJob")
这个一定要与调度中心新建任务的JobHandler的值保持一致,如下图:
(1)首先启动调度中心
(2)启动xxl-job-demo项目,为了展示更好的效果,可以同时启动三个项目,用同一个JobHandler,查看处理方式。
在启动多个项目的时候,端口需要切换,连接xxl-job的执行器端口不同相同
服务一:默认启动8801端口,执行器端口为9999
idea中不用其他配置,直接启动项目即可
服务二:项目端口:8802,执行器端口:9998
idea配置如下:
修改参数
-Dport=8082 -Dexecutor.port=9998
服务三:项目端口:8803,执行器端口:9997 -Dport=8083 -Dexecutor.port=9997
(3)测试效果
三个项目启动后,可以查看到是轮询的方式分别去执行当前调度任务。
当时我也用的不熟,看了一下同事的代码后,确定是可以传参的