语义分割系列7-Attention Unet(pytorch实现)

继前文Unet和Unet++之后,本文将介绍Attention Unet。

Attention Unet地址,《Attention U-Net: Learning Where to Look for the Pancreas》。


AttentionUnet

Attention Unet发布于2018年,主要应用于医学领域的图像分割,全文中主要以肝脏的分割论证。

论文中心

Attention Unet主要的中心思想就是提出来Attention gate模块,使用soft-attention替代hard-attention,将attention集成到Unet的跳跃连接和上采样模块中,实现空间上的注意力机制。通过attention机制来抑制图像中的无关信息,突出局部的重要特征。

网络架构

语义分割系列7-Attention Unet(pytorch实现)_第1张图片 图1 AttentionUnet模型

 Attention Unet的模型结构和Unet十分相像,只是增加了Attention Gate模块来对skip connection和upsampling层做attention机制(图2)。

语义分割系列7-Attention Unet(pytorch实现)_第2张图片 图2 Attention Gate模块

在Attention Gate模块中,g和xl分别为skip connection的输出和下一层的输出,如图3。

语义分割系列7-Attention Unet(pytorch实现)_第3张图片 图3 Attention Gate的输入

需要注意的是,在计算Wg和Wx后,对两者进行相加。但是,此时g的维度和xl的维度并不相等,则需要对g做下采样或对xl做上采样。(我倾向于对xl做上采样,因为在原本的Unet中,在Decoder就需要对下一层做上采样,所以,直接使用这个上采样结果可以减少网络计算)。

Wg和Wx经过相加,ReLU激活,1x1x1卷积,Sigmoid激活,生成一个权重信息,将这个权重与原始输入xl相乘,得到了对xl的attention激活。这就是Attenton Gate的思想。

Attenton Gate还有一个比较重要的特点是:这个权重可以经由网络学习!因为soft-attention是可微的,可以微分的attention就可以通过神经网络算出梯度并且前向传播和后向反馈来学习得到attention的权重。以此来学习更重要的特征。

模型复现

Attention Unet代码

import torch
import torch.nn as nn
#Attention gate代码
class AttentionBlock(nn.Module):
    def __init__(self, F_g, F_l, F_int):
        super(AttentionBlock, self).__init__()
        self.W_g = nn.Sequential(
            nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(F_int)
        )
        
        self.W_x = nn.Sequential(
            nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(F_int)
        )
        
        self.psi = nn.Sequential(
            nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1),
            nn.Sigmoid()
        )
        
        self.relu = nn.ReLU(inplace=True)
        
    def forward(self, g, x):
        g = self.W_g(g)
        x = self.W_x(x)
        psi = self.relu(g+x)
        psi = self.psi(psi)
        
        return x*psi
        
        
        
#AttentionUnet代码
class AttentionUnet(nn.Module):
    def __init__(self, num_classes):
        super(AttentionUnet, self).__init__()
        self.stage_1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        
        self.stage_2 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
        )
        
        self.stage_3 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
        )
        
        self.stage_4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
        )
        
        self.stage_5 = nn.Sequential(
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3,padding=1),
            nn.BatchNorm2d(1024),
            nn.ReLU(),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=3,padding=1),
            nn.BatchNorm2d(1024),
            nn.ReLU(),
        )
        
        self.upsample_4 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=1024, out_channels=512,kernel_size=4,stride=2, padding=1) 
        )
        self.upsample_3 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=512, out_channels=256,kernel_size=4,stride=2, padding=1) 
        )
        self.upsample_2 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=256, out_channels=128,kernel_size=4,stride=2, padding=1) 
        )
        self.upsample_1 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=128, out_channels=64,kernel_size=4,stride=2, padding=1) 
        )
        
        self.stage_up_4 = nn.Sequential(
            nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3,padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        
        self.stage_up_3 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3,padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )    
        
        self.stage_up_2 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3,padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU()
        ) 
        self.stage_up_1 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )    
        
        self.Attentiongate1 = AttentionBlock(512, 512, 512)
        self.Attentiongate2 = AttentionBlock(256, 256, 256)
        self.Attentiongate3 = AttentionBlock(128, 128, 128)
        
        self.final = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=num_classes, kernel_size=3, padding=1),
        )

        
    def forward(self, x):
        x = x.float()
        #下采样过程
        stage_1 = self.stage_1(x)
        stage_2 = self.stage_2(stage_1)
        stage_3 = self.stage_3(stage_2)
        stage_4 = self.stage_4(stage_3)
        stage_5 = self.stage_5(stage_4)
        
 

        up_4 = self.upsample_4(stage_5)
        stage_4 = self.Attentiongate1(up_4, stage_4)
        up_4_conv = self.stage_up_4(torch.cat([up_4, stage_4], dim=1))
        
        
        up_3 = self.upsample_3(up_4_conv)
        stage_3 = self.Attentiongate2(up_3, stage_3)
        up_3_conv = self.stage_up_3(torch.cat([up_3, stage_3], dim=1))
        
        up_2 = self.upsample_2(up_3_conv)
        stage_2 = self.Attentiongate3(up_2, stage_2)
        up_2_conv = self.stage_up_2(torch.cat([up_2, stage_2], dim=1))
        
        up_1 = self.upsample_1(up_2_conv)
        up_1_conv = self.stage_up_1(torch.cat([up_1, stage_1], dim=1))   
        
        output = self.final(up_1_conv)
        
        return output

数据集

数据集依旧使用Camvid数据集,见Camvid数据集的构建和使用。

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2

torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(224, 224),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    
train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=True,drop_last=True)

模型训练

model = AttentionUnet(num_classes=33).cuda()
#model.load_state_dict(torch.load(r"checkpoints/Unet_100.pth"),strict=False)

from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1, last_epoch=-1)

#训练50轮
epochs_num = 50
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    
    loss_list = []
    train_acc_list = []
    test_acc_list = []
    epochs_list = []
    time_list = []
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.long(), loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
        scheduler.step()
#         print(f'loss {metric[0] / metric[2]:.3f}, train acc '
#               f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
#         print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
#               f'{str(devices)}')
        print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} ---  train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
        
        #---------保存训练数据---------------
        df = pd.DataFrame()
        loss_list.append(metric[0] / metric[2])
        train_acc_list.append(metric[1] / metric[3])
        test_acc_list.append(test_acc)
        epochs_list.append(epoch+1)
        time_list.append(timer.sum())
        
        df['epoch'] = epochs_list
        df['loss'] = loss_list
        df['train_acc'] = train_acc_list
        df['test_acc'] = test_acc_list
        df['time'] = time_list
        df.to_excel("savefile/AttentionUnet_camvid1.xlsx")
        #----------------保存模型-------------------
        if np.mod(epoch+1, 5) == 0:
            torch.save(model.state_dict(), f'checkpoints/AttentionUnet_{epoch+1}.pth')

开始训练

train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)

训练结果

语义分割系列7-Attention Unet(pytorch实现)_第4张图片

你可能感兴趣的:(语义分割,pytorch,深度学习,人工智能,计算机视觉,python)