基于Pytorch实现RNN(多层RNN,双向RNN)进行文本分类

RNN:

基于Pytorch实现RNN(多层RNN,双向RNN)进行文本分类_第1张图片

基于Pytorch实现RNN(多层RNN,双向RNN)进行文本分类_第2张图片

公式:

基于Pytorch实现RNN(多层RNN,双向RNN)进行文本分类_第3张图片

多层RNN,前层的输出ht作为后层的输入xt:

基于Pytorch实现RNN(多层RNN,双向RNN)进行文本分类_第4张图片

双向RNN:

因为时刻t的输出不仅取决于之前时刻的信息,还取决于未来的时刻,所以有了双向RNN。比如要预测一句话中间丢失的一个单词,有时只看上文是不行的,需要查看上下文。原理也和RNN差不多,只不过将是将句子中的每个token的向量按句子倒序一个个传入RNN。正向时用正向权重计算,反向时用反向权重计算。
正向计算和反向计算的权重不共享。

nn.RNN(input_size, 
		hidden_size, 
		num_layers=1, 
		nonlinearity=tanh, 
		bias=True, 
		batch_first=False, 
		dropout=0, 
		bidirectional=False)


input_size:表示输入 xt 的特征维度
hidden_size:表示输出的特征维度
num_layers:表示网络的层数
nonlinearity:表示选用的非线性激活函数,默认是 ‘tanh’
bias:表示是否使用偏置,默认使用
batch_first:表示输入数据的形式,默认是 False,就是这样形式,(seq, batch, feature),也就是将序列长度放在第一位,batch 放在第二位
dropout:表示是否在输出层应用 dropout
bidirectional:表示是否使用双向的 rnn,默认是 False。

import  torch
from    torch import nn
from    torch.nn import functional as F
rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2)
# 可理解为一个字串长度为5(RNN训练时每个字符一个个传进去,一个字符代表一个时刻t), batch size为3, 字符维度为10的输入
input_tensor  = torch.randn(5, 3, 10)
# 两层RNN的初始H参数,维度[layers, batch, hidden_len]
h0 = torch.randn(2, 3, 20)
# output_tensor最后一层所有状态!!!!!的输出(看上面那个多层的RNN图最后一层会输出h1,h2....hn)
#hn(也即Cn)表示两层最后一个时序的状态输出
output_tensor, hn =rnn(input_tensor, h0)
print(output_tensor.shape, hn.shape)

torch.Size([5, 3, 20]) torch.Size([2, 3, 20])

从上面可以看到输出的h,x,和输入的h,x维度一致。
上面的参数中,num_layers=2相当于有两个rnn cell串联,即一个的输出h作为下一个的输入x。也可单独使用两个nn.RNNCell实现

而当我们设置成双向RNN时,即bidirectional=True

rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2,bidirectional=True) 
h0 = torch.randn(4,3, 20)

torch.Size([5, 3, 40]) torch.Size([4, 3, 20])

一共5个时刻,可以看到最后一时刻的output维度是[3, 40],因为nn.rnn模块他在最后会将正向和反向的结果进行拼接concat。而hn中的4是指正反向,还有因为num_layers是两层所以为4。

基于RNN(多层RNN、双向RNN只需修改两个参数即可实现)的英文文本分类:

数据集:英文电影评论(积极、消极)二分类

分词表是我自己修改了nltk路径:
C:\用户\AppData\Roaming\nltk_data\corpora\stopwords里的english文件。
  然后你把我的my_english文件放进里面就可以,或者你直接用它的english
  数据集链接和my_english分词表都在以下网盘链接:
链接:https://pan.baidu.com/s/1vhh5FmU01KqyjRtxByyxcQ
提取码:bx4k

关于词嵌入是用了nn.embedding(),它的用法请看这:点击进入

import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

读入数据集,数据集为电影评论数据(英文,一个24500条数据),分为积极和消极两类:

df = pd.read_csv('Dataset.csv')
print('一共有{}条数据'.format(len(df)))
df.info()

分词去停用词,我的csv文件里已经处理完保存好了分词结果,可以不运行这一部分:

from nltk.corpus import stopwords
import nltk
def separate_sentence(text):
    disease_List = nltk.word_tokenize(text)
    #去除停用词
    filtered = [w for w in disease_List if(w not in stopwords.words('my_english'))]
    #进行词性分析,去掉动词、助词等
    Rfiltered =nltk.pos_tag(filtered)
    #以列表的形式进行返回,列表元素以(词,词性)元组的形式存在
    filter_word = [i[0] for i in Rfiltered]
    return " ".join(filter_word)
df['sep_review'] = df['review'].apply(lambda x:separate_sentence(x))

根据需要筛选数据(这里我使用了1000条):

#用xxx条玩玩
use_df = df[:1000]
use_df.head(10)
sentences = list(use_df['sep_review'])
labels = list(use_df['sentiment'])

小于最大长度的补齐:

max_seq_len = max(use_df['sep_review'].apply(lambda x: len(x.split())))
PAD = ' '  # 未知字,padding符号用来填充长短不一的句子(用啥符号都行,到时在nn.embedding的参数设为padding_idx=word_to_id[''])即可

#小于最大长度的补齐
for i in range(len(sentences)):
    sen2list = sentences[i].split()
    sentence_len = len(sen2list)
    if sentence_len<max_seq_len:
        sentences[i] += PAD*(max_seq_len-sentence_len)  

制作词表(后面用来给单词编号):

num_classes = len(set(labels))  # num_classes=2
word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

给单词编号(编完号后续还要在embeding层将其转成词向量):

def make_data(sentences, labels):
    inputs = []
    for sen in sentences:
        inputs.append([word2idx[n] for n in sen.split()])

    targets = []
    for out in labels:
        targets.append(out) # To using Torch Softmax Loss function
    return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

用Data.TensorDataset(torch.utils.data)对给定的tensor数据(样本和标签),将它们包装成dataset,
然后用Data.DataLoader(torch.utils.data)数据加载器,组合数据集和采样器,并在数据集上提供单进程或多进程迭代器。它可以对我们上面所说的数据集dataset作进一步的设置(比如可以设置打乱,对数据裁剪,设置batch_size等操作,很方便):

from sklearn.model_selection import train_test_split
# 划分训练集,测试集
x_train,x_test,y_train,y_test = train_test_split(input_batch,target_batch,test_size=0.2,random_state = 0)

train_dataset = Data.TensorDataset(torch.tensor(x_train), torch.tensor(y_train))
test_dataset = Data.TensorDataset(torch.tensor(x_test), torch.tensor(y_test))
dataset = Data.TensorDataset(input_batch, target_batch)

batch_size = 16
train_loader = Data.DataLoader(
    dataset=train_dataset,      # 数据,封装进Data.TensorDataset()类的数据
    batch_size=batch_size,      # 每块的大小
    shuffle=True,               # 要不要打乱数据 (打乱比较好)
    num_workers=2,              # 多进程(multiprocess)来读数据
)
test_loader = Data.DataLoader(
    dataset=test_dataset,      # 数据,封装进Data.TensorDataset()类的数据
    batch_size=batch_size,      # 每块的大小
    shuffle=True,               # 要不要打乱数据 (打乱比较好)
    num_workers=2,              # 多进程(multiprocess)来读数据
)

搭建网络:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device,'能用')
class RNN(nn.Module):
    def __init__(self,vocab_size, embedding_dim, hidden_size, num_classes, num_layers,bidirectional):
        super(RNN, self).__init__()
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.hidden_size = hidden_size
        self.num_classes = num_classes
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        
        self.embedding = nn.Embedding(self.vocab_size, embedding_dim, padding_idx=word2idx[''])
        self.rnn = nn.RNN(input_size=self.embedding_dim, hidden_size=self.hidden_size,batch_first=True,num_layers=self.num_layers,bidirectional=self.bidirectional)
        if self.bidirectional:
            self.fc = nn.Linear(hidden_size*2, num_classes)
        else:
            self.fc = nn.Linear(hidden_size, num_classes)
        
    def forward(self, x):
        batch_size, seq_len = x.shape
        #初始化一个h0,也即c0,在RNN中一个Cell输出的ht和Ct是相同的,而LSTM的一个cell输出的ht和Ct是不同的
        #维度[layers, batch, hidden_len]
        if self.bidirectional:
            h0 = torch.randn(self.num_layers*2, batch_size, self.hidden_size).to(device)
        else:
            h0 = torch.randn(self.num_layers, batch_size, self.hidden_size).to(device)
        x = self.embedding(x)
        out,_ = self.rnn(x, h0)
        output = self.fc(out[:,-1,:]).squeeze(0) #因为有max_seq_len个时态,所以取最后一个时态即-1层
        return output   

实例化网络:
要实现多层RNN只需修改参数:num_layers。要实现双向RNN只需修改参数:bidirectional=True。

model = RNN(vocab_size=vocab_size,embedding_dim=300,hidden_size=20,num_classes=2,num_layers=2,bidirectional=True).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

模型训练过程:

model.train()
for epoch in range(1):
    for batch_x, batch_y in train_loader:
        batch_x, batch_y = batch_x.to(device), batch_y.to(device)
        pred = model(batch_x)
        loss = criterion(pred, batch_y)  #batch_y类标签就好,不用one-hot形式   
        
        if (epoch + 1) % 10 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

模型测试过程:这里只测试准确率

test_acc_list = []
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)
        output = model(data)
        pred = output.max(1, keepdim=True)[1]                           # 找到概率最大的下标
        correct += pred.eq(target.view_as(pred)).sum().item()

# test_loss /= len(test_loader.dataset)
# test_loss_list.append(test_loss)
test_acc_list.append(100. * correct / len(test_loader.dataset))
print('Accuracy: {}/{} ({:.0f}%)\n'.format(correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

你可能感兴趣的:(NLP,RNN,NLP,深度学习,文本分类)