Python疫情数据可视化分析

前言

本项目主要通过python的matplotlib pandas pyecharts等库对疫情数据进行可视化分析

数据来源:

  • 本数据集来源于kaggle竞赛的开源数据集,数据集地址
  • 本数据集主要涉及到全球疫情统计,包括确诊、治愈、死亡、时间、国家、地区等信息

功能函数

读取文件

df = pd.read_csv(r'C:\Users\Hasee\Desktop/covid_19_data.csv')
df.head()

Python疫情数据可视化分析_第1张图片

更换列名,便于查看

cols= ['序号','日期','省/州','国家','最近更新','确诊','死亡','治愈']
df.columns = cols
df.日期 = pd.to_datetime(df.日期)
df

Python疫情数据可视化分析_第2张图片

## 利用groupby按照日期统计确诊死亡治愈病例的总和

#合并同一天同国家日期
global_confirm = df.groupby('日期')[['确诊', '死亡', '治愈']].sum()
global_confirm

Python疫情数据可视化分析_第3张图片

全球疫情趋势

ax = global_confirm.plot(figsize = (12,10), title = '全球疫情趋势图')

Python疫情数据可视化分析_第4张图片

筛选出中国的数据

利用groupby按照日期统计确诊死亡治愈病例的总和

global_china = df[df['国家'] == 'Mainland China'].reset_index()
global_china_confirm  =  global_china.groupby('日期')[['确诊', '死亡', '治愈']].sum().reset_index()

画图,三条线组合到一个图

Python疫情数据可视化分析_第5张图片

利用groupby按照省统计确诊死亡治愈病例的总和

global_china = df[df['国家'] == 'Mainland China'].reset_index()
global_china_province_confirm  =  global_china.groupby('省/州')[['确诊', '死亡', '治愈']].sum().reset_index()

recovercent = 100.*global_china_province_confirm['治愈'] / global_china_province_confirm['治愈'].sum()
labels = ['{0}-{1:1.2f}%-{2}'.format(i,j,k) for i,j,k in zip(list(global_china_province_confirm['省/州']), recovercent, list(global_china_province_confirm['治愈']))]
plt.figure(figsize=(10,10))
plt.pie(global_china_province_confirm['治愈'],radius = 0.3)

Python疫情数据可视化分析_第6张图片

确诊人数排名前15的国家

plt.figure(figsize=(16,16))
plt.barh(list(global_country_confirm_rank.国家)[::-1], list(global_country_confirm_rank.确诊)[::-1])
plt.title('确诊人数排名前15的国家')
plt.xlabel('人数(千万)')
plt.ylabel('国家')

Python疫情数据可视化分析_第7张图片

这里用pyecharts库画图,绘制的玫瑰图,rosetype

set_global_opts是设置格式:

Python疫情数据可视化分析_第8张图片

中国确诊人数前十的省

china_confirm = df[df['国家'] == "Mainland China"]
china_latest = china_confirm[china_confirm['日期'] == max(china_confirm['日期'])]

words = WordCloud()
words.add('确诊人数', [tuple(dic) for dic in zip(list(china_latest['省/州']),list(china_latest['确诊']))], word_size_range=[20,100])

Python疫情数据可视化分析_第9张图片

区域图

china_death = df[df['国家'] == "Mainland China"]
china_death_latest = china_death[china_death['日期'] == max(china_death['日期'])]
china_death_latest = china_death_latest.groupby('省/州')[['确诊', '死亡']].max().reset_index()

Python疫情数据可视化分析_第10张图片

geo = Map()

geo.add("中国死亡病例分布", [list(z) for z in zip(china_death_prodic,list(china_death_latest['死亡']))], "china")
geo.set_global_opts(title_opts=opts.TitleOpts(title="全国各省死亡病例数据分布"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                    pieces=[
                    {"min": 1500, "label": '>10000人', "color": "#6F171F"}, 
                    {"min": 500, "max": 15000, "label": '500-1000人', "color": "#C92C34"},
                    {"min": 100, "max": 499, "label": '100-499人', "color": "#E35B52"},
                    {"min": 10, "max": 99, "label": '10-99人', "color": "#F39E86"},
                    {"min": 1, "max": 9, "label": '1-9人', "color": "#FDEBD0"}]))
geo.render_notebook()

Python疫情数据可视化分析_第11张图片

热力图

geo = Geo()
geo.add_schema(maptype="china")

geo.add("中国死亡病例分布", [list(dic) for dic in zip(china_death_prodic,list(china_death_latest['死亡']))],type_=GeoType.EFFECT_SCATTER)
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(),title_opts=opts.TitleOpts(title="全国各省死亡病例数据分布"))
geo.render_notebook()

Python疫情数据可视化分析_第12张图片

全球死亡人数地理分布情况

map = Map()
map.set_global_opts(title_opts=opts.TitleOpts(title="全球死亡人数地理分布情况"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                    pieces=[
                    {"min": 100001, "label": '>100001人', "color": "#6F171F"}, 
                    {"min": 10001, "max": 100000, "label": '10001-100000人', "color": "#C92C34"},
                    {"min": 1001, "max": 10000, "label": '1001-10000人', "color": "#E35B52"},
                    {"min": 101, "max": 10000, "label": '101-10000人', "color": "#F39E86"},
                    {"min": 1, "max": 100, "label": '1-100人', "color": "#FDEBD0"}]))
map.add("全球死亡人数地理分布情况", [list(z) for z in zip(global_death_n,list(global_death['死亡']))], "world")
map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
map.render_notebook()

Python疫情数据可视化分析_第13张图片

全球疫情频率直方图

global_confirm.plot.hist(alpha=0.5)
plt.xlabel('人数(千万)')
plt.ylabel('出现频率')
plt.title('全球疫情频率直方图')

Python疫情数据可视化分析_第14张图片

其他图

陕西确诊病例饼图

Python疫情数据可视化分析_第15张图片

陕西省确诊病例数据分布

Python疫情数据可视化分析_第16张图片

中国治愈病例玫瑰图

Python疫情数据可视化分析_第17张图片

到此这篇关于Python疫情数据可视化分析的文章就介绍到这了,更多相关Python可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(Python疫情数据可视化分析)