IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现

IOU Loss

算法作用:Iou的就是交并比,预测框和真实框相交区域面积和合并区域面积的比值,计算公式如下,Iou作为损失函数的时候只要将其对数值输出就好了。
在这里插入图片描述

def Iou_loss(preds, bbox, eps=1e-6, reduction='mean'):
    '''
    preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    reduction:"mean"or"sum"
    return: loss
    '''
    x1 = torch.max(preds[:, 0], bbox[:, 0])
    y1 = torch.max(preds[:, 1], bbox[:, 1])
    x2 = torch.min(preds[:, 2], bbox[:, 2])
    y2 = torch.min(preds[:, 3], bbox[:, 3])
    
    w = (x2 - x1 + 1.0).clamp(0.)
    h = (y2 - y1 + 1.0).clamp(0.)
    inters = w * h
    print("inters:\n",inters)
 
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
    print("uni:\n",uni)
    ious = (inters / uni).clamp(min=eps)
    loss = -ious.log()
 
    if reduction == 'mean':
        loss = torch.mean(loss)
    elif reduction == 'sum':
        loss = torch.sum(loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss
if __name__ == "__main__":
    pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
    gt_box = torch.tensor([[3,4,7,9]])
    loss = Iou_loss(preds=pred_box,bbox=gt_box)
 
# 输出结果
"""
inters:
 tensor([20.,  3.])
uni:
 tensor([35., 63.])
last_loss:
 tensor(1.8021)
"""

GIOU Loss

IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现_第1张图片

代码

def Giou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py#L36
    :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :return: loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(0.)
    ih = (iy2 - iy1 + 1.0).clamp(0.)
 
    # overlap
    inters = iw * ih
    print("inters:\n",inters)
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters + eps
    print("uni:\n",uni)
    # ious
    ious = inters / uni
    print("Iou:\n",ious)
    ex1 = torch.min(preds[:, 0], bbox[:, 0])
    ey1 = torch.min(preds[:, 1], bbox[:, 1])
    ex2 = torch.max(preds[:, 2], bbox[:, 2])
    ey2 = torch.max(preds[:, 3], bbox[:, 3])
    ew = (ex2 - ex1 + 1.0).clamp(min=0.)
    eh = (ey2 - ey1 + 1.0).clamp(min=0.)
 
    # enclose erea
    enclose = ew * eh + eps
    print("enclose:\n",enclose)
 
    giou = ious - (enclose - uni) / enclose
    loss = 1 - giou
 
    if reduction == 'mean':
        loss = torch.mean(loss)
    elif reduction == 'sum':
        loss = torch.sum(loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss
if __name__ == "__main__":
    pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
    gt_box = torch.tensor([[3,4,7,9]])
    loss = Giou_loss(preds=pred_box,bbox=gt_box)
 
# 输出结果
"""
inters:
 tensor([20.,  3.])
uni:
 tensor([35., 63.])
Iou:
 tensor([0.5714, 0.0476])
enclose:
 tensor([36., 99.])
last_loss:
 tensor(0.8862)
"""

DIOU Loss

IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现_第2张图片

代码

def Diou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    eps: eps to avoid divide 0
    reduction: mean or sum
    return: diou-loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(min=0.)
    ih = (iy2 - iy1 + 1.0).clamp(min=0.)
 
    # overlaps
    inters = iw * ih
 
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
 
    # iou
    iou = inters / (uni + eps)
    print("iou:\n",iou)
 
    # inter_diag
    cxpreds = (preds[:, 2] + preds[:, 0]) / 2
    cypreds = (preds[:, 3] + preds[:, 1]) / 2
 
    cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
    cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
 
    inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
    print("inter_diag:\n",inter_diag)
 
    # outer_diag
    ox1 = torch.min(preds[:, 0], bbox[:, 0])
    oy1 = torch.min(preds[:, 1], bbox[:, 1])
    ox2 = torch.max(preds[:, 2], bbox[:, 2])
    oy2 = torch.max(preds[:, 3], bbox[:, 3])
 
    outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
    print("outer_diag:\n",outer_diag)
 
    diou = iou - inter_diag / outer_diag
    diou = torch.clamp(diou, min=-1.0, max=1.0)
 
    diou_loss = 1 - diou
    print("last_loss:\n",diou_loss)
 
    if reduction == 'mean':
        loss = torch.mean(diou_loss)
    elif reduction == 'sum':
        loss = torch.sum(diou_loss)
    else:
        raise NotImplementedError
    return loss
if __name__ == "__main__":
    pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
    gt_box = torch.tensor([[3,4,7,9]])
    loss = Diou_loss(preds=pred_box,bbox=gt_box)
 
# 输出结果
"""
iou:
 tensor([0.5714, 0.0476])
inter_diag:
 tensor([ 1, 32])
outer_diag:
 tensor([ 50, 164])
last_loss:
 tensor([0.4286, 0.9524])
"""

CIOU Loss

IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现_第3张图片
代码

import math
def Ciou_loss(preds, bbox, eps=1e-7, reduction='mean'):
    '''
    https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/loss/multibox_loss.py
    :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
    :param eps: eps to avoid divide 0
    :param reduction: mean or sum
    :return: diou-loss
    '''
    ix1 = torch.max(preds[:, 0], bbox[:, 0])
    iy1 = torch.max(preds[:, 1], bbox[:, 1])
    ix2 = torch.min(preds[:, 2], bbox[:, 2])
    iy2 = torch.min(preds[:, 3], bbox[:, 3])
 
    iw = (ix2 - ix1 + 1.0).clamp(min=0.)
    ih = (iy2 - iy1 + 1.0).clamp(min=0.)
 
    # overlaps
    inters = iw * ih
 
    # union
    uni = (preds[:, 2] - preds[:, 0] + 1.0) * (preds[:, 3] - preds[:, 1] + 1.0) + (bbox[:, 2] - bbox[:, 0] + 1.0) * (
            bbox[:, 3] - bbox[:, 1] + 1.0) - inters
 
    # iou
    iou = inters / (uni + eps)
    print("iou:\n",iou)
 
    # inter_diag
    cxpreds = (preds[:, 2] + preds[:, 0]) / 2
    cypreds = (preds[:, 3] + preds[:, 1]) / 2
 
    cxbbox = (bbox[:, 2] + bbox[:, 0]) / 2
    cybbox = (bbox[:, 3] + bbox[:, 1]) / 2
 
    inter_diag = (cxbbox - cxpreds) ** 2 + (cybbox - cypreds) ** 2
 
    # outer_diag
    ox1 = torch.min(preds[:, 0], bbox[:, 0])
    oy1 = torch.min(preds[:, 1], bbox[:, 1])
    ox2 = torch.max(preds[:, 2], bbox[:, 2])
    oy2 = torch.max(preds[:, 3], bbox[:, 3])
 
    outer_diag = (ox1 - ox2) ** 2 + (oy1 - oy2) ** 2
 
    diou = iou - inter_diag / outer_diag
    print("diou:\n",diou)
 
    # calculate v,alpha
    wbbox = bbox[:, 2] - bbox[:, 0] + 1.0
    hbbox = bbox[:, 3] - bbox[:, 1] + 1.0
    wpreds = preds[:, 2] - preds[:, 0] + 1.0
    hpreds = preds[:, 3] - preds[:, 1] + 1.0
    v = torch.pow((torch.atan(wbbox / hbbox) - torch.atan(wpreds / hpreds)), 2) * (4 / (math.pi ** 2))
    alpha = v / (1 - iou + v)
    ciou = diou - alpha * v
    ciou = torch.clamp(ciou, min=-1.0, max=1.0)
 
    ciou_loss = 1 - ciou
    if reduction == 'mean':
        loss = torch.mean(ciou_loss)
    elif reduction == 'sum':
        loss = torch.sum(ciou_loss)
    else:
        raise NotImplementedError
    print("last_loss:\n",loss)
    return loss
if __name__ == "__main__":
    pred_box = torch.tensor([[2,4,6,8],[5,9,13,12]])
    gt_box = torch.tensor([[3,4,7,9]])
    loss = Ciou_loss(preds=pred_box,bbox=gt_box)
 
# 输出结果
"""
iou:
 tensor([0.5714, 0.0476])
diou:
 tensor([0.5714, 0.0476])
last_loss:
 tensor(0.6940)
"""

EIOU-loss和Focal EIOU-loss

IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现_第4张图片
代码

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False,  EIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if GIoU or DIoU or CIoU or EIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU or EIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = cw ** 2 + eps
                ch2 = ch ** 2 + eps
                return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU

alpha IOU

代码


def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=3, eps=1e-7):
    # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    # change iou into pow(iou+eps)
    # iou = inter / union
    iou = torch.pow(inter/union + eps, alpha)
    # beta = 2 * alpha
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal
            rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
            rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
            rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha  # center distance
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha_ciou = v / ((1 + eps) - inter / union + v)
                # return iou - (rho2 / c2 + v * alpha_ciou)  # CIoU
                return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            # c_area = cw * ch + eps  # convex area
            # return iou - (c_area - union) / c_area  # GIoU
            c_area = torch.max(cw * ch + eps, union) # convex area
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU
    else:
        return iou # torch.log(iou+eps) or iou

你可能感兴趣的:(深度学习笔记,yolov5-目标检测,python,pytorch)