使用Scala/Java对Iceberg数据湖的Hive Catalog/Hadoop Catalog/HDFS Path进行表操作

目录

  • 1. Hive Catalog(创建表、加载表、重命名表、删除表)
  • 2. Hadoop Catalog(创建表、加载表、重命名表、删除表)
  • 3. 直接通过HDFS Path创建、加载、删除Hadoop Catalog表

1. Hive Catalog(创建表、加载表、重命名表、删除表)

  1. pom.xml添加依赖如下:
        
            org.apache.hadoop
            hadoop-common
            3.3.1
        

        
            org.apache.hadoop
            hadoop-mapreduce-client-core
            3.3.1
        


        
            org.apache.hive
            hive-metastore
            3.1.2
        



        
            org.apache.iceberg
            iceberg-core
            0.13.1
        


        
            org.apache.iceberg
            iceberg-hive-metastore
            0.13.1
        

  1. 将Hadoop的配置文件core-site.xml和hdfs-site.xml,放到项目的src/main/resources目录下

  2. 创建表、加载表、重命名表、删除表示例

import org.apache.iceberg.hive.HiveCatalog
import org.apache.hadoop.conf.Configuration
import org.apache.iceberg.Table
import org.apache.iceberg.catalog.TableIdentifier
import org.apache.iceberg.Schema
import org.apache.iceberg.types.Types
import org.apache.iceberg.PartitionSpec


object flink_test {

  def main(args: Array[String]): Unit = {

    // =======初始化Hive Catalog=============
    val hiveCatalog:HiveCatalog = new HiveCatalog()
    hiveCatalog.setConf(new Configuration())

    val properties:java.util.HashMap[String,String]=
      new java.util.HashMap[String,String]()
    properties.put("warehouse", "hdfs://nnha/user/iceberg/warehouse")
    properties.put("uri", "thrift://hive1:9083")
    properties.put("clients", "2")    // 客户端连接池大小

    hiveCatalog.initialize("hive_catalog", properties)  // 第一个参数为catalog名称

    // =============创建表==================
    val schema:Schema = new Schema(
      // 通过Java API生成的Schema,需要给每个字段指定唯一ID
      Types.NestedField.required(1, "user_name", Types.StringType.get()),
      Types.NestedField.required(2, "order_time", Types.TimestampType.withZone()),
      Types.NestedField.optional(3, "buy_products", Types.ListType.ofRequired(4, Types.StringType.get()))
    )

    val partitionSpec:PartitionSpec = PartitionSpec.builderFor(schema)
      // 从timestamp类型字段,解析int类型的小时作为分区字段
      .hour("order_time")
      // 直接取表字段作为分区字段
      .identity("user_name")
      .build()

    // 参数分别是数据库名和表名
    val tableName:TableIdentifier = TableIdentifier.of("iceberg_db", "java_hive_table")
    val table:Table = hiveCatalog.createTable(tableName,schema, partitionSpec)


    // =============加载一个已经存在的表=========
    // val table: Table = hiveCatalog.loadTable(TableIdentifier)

    // =============重命名表=========
    // hiveCatalog.renameTable(TableIdentifier, TableIdentifier)

    // =============删除表=========
    // true表示删除metadata目录下的文件,但是不删除metadata目录
    // hiveCatalog.dropTable(identifier:TableIdentifier, purge:Boolean)

  }
}

如果用scala执行,可以用以下命令

[root@hive1 ~]# scala -classpath flink_dev-1.0-SNAPSHOT.jar flink_test

2. Hadoop Catalog(创建表、加载表、重命名表、删除表)

  1. pom.xml添加依赖如下:

        
            org.apache.hadoop
            hadoop-common
            3.3.1
        

        
            org.apache.hadoop
            hadoop-hdfs-client
            3.3.1
        

        
            org.apache.iceberg
            iceberg-core
            0.13.1
        

  1. 将Hadoop的配置文件hdfs-site.xml,放到项目的src/main/resources目录下

  2. 创建表、加载表、重命名表、删除表示例

import org.apache.hadoop.conf.Configuration
import org.apache.iceberg.catalog.TableIdentifier
import org.apache.iceberg.hadoop.HadoopCatalog
import org.apache.iceberg.types.Types
import org.apache.iceberg.{PartitionSpec, Schema, Table}


object flink_test {

  def main(args: Array[String]): Unit = {

    // =======初始化Hadoop Catalog=============
    val warehousePath: String = "hdfs://nnha/user/iceberg/warehouse"
    val hadoopCatalog: HadoopCatalog = new HadoopCatalog(new Configuration(), warehousePath)

    // =============创建表==================
    val schema: Schema = new Schema(
      // 通过Java API生成的Schema,需要给每个字段指定唯一ID
      Types.NestedField.required(1, "user_name", Types.StringType.get()),
      Types.NestedField.required(2, "order_time", Types.TimestampType.withZone()),
      Types.NestedField.optional(3, "hobby", Types.ListType.ofRequired(4, Types.StringType.get()))
    )

    val partitionSpec: PartitionSpec = PartitionSpec.builderFor(schema)
      // 从timestamp类型字段,解析int类型的小时作为分区字段
      .hour("order_time")
      // 直接取表字段作为分区字段
      .identity("user_name")
      .build()

    // 参数分别是数据库名和表名
    val tableName: TableIdentifier = TableIdentifier.of("iceberg_db", "java_hadoop_table")
    val table: Table = hadoopCatalog.createTable(tableName, schema, partitionSpec)


    // =============加载一个已经存在的表=========
    // val table: Table = hadoopCatalog.loadTable(TableIdentifier)


    // =============重命名表=========
    // hadoopCatalog.renameTable(TableIdentifier, TableIdentifier)


    // =============删除表=========
    // hadoopCatalog.dropTable(identifier:TableIdentifier, purge:Boolean)


  }
}

如果用scala执行,可以用以下命令

[root@hive1 ~]# scala -classpath flink_dev-1.0-SNAPSHOT.jar flink_test

3. 直接通过HDFS Path创建、加载、删除Hadoop Catalog表

  1. pom.xml添加依赖如下:

        
            org.apache.hadoop
            hadoop-common
            3.3.1
        

        
            org.apache.hadoop
            hadoop-hdfs-client
            3.3.1
        

        
            org.apache.iceberg
            iceberg-core
            0.13.1
        

  1. 将Hadoop的配置文件hdfs-site.xml,放到项目的src/main/resources目录下

  2. 创建表、加载表、删除表示例

import org.apache.hadoop.conf.Configuration
import org.apache.iceberg.hadoop.HadoopTables
import org.apache.iceberg.types.Types
import org.apache.iceberg.{PartitionSpec, Schema, Table}



object flink_test {

  def main(args: Array[String]): Unit = {

    // =======初始化Hadoop Tables=============
    val hadoopTables: HadoopTables = new HadoopTables(new Configuration())

    // =============创建表==================
    val schema: Schema = new Schema(
      // 通过Java API生成的Schema,需要给每个字段指定唯一ID
      Types.NestedField.required(1, "user_name", Types.StringType.get()),
      Types.NestedField.required(2, "order_time", Types.TimestampType.withZone()),
      Types.NestedField.optional(3, "hobby", Types.ListType.ofRequired(4, Types.StringType.get()))
    )

    val partitionSpec: PartitionSpec = PartitionSpec.builderFor(schema)
      // 从timestamp类型字段,解析int类型的小时作为分区字段
      .hour("order_time")
      // 直接取表字段作为分区字段
      .identity("user_name")
      .build()

    val warehouseTablePath: String = "hdfs://nnha/user/iceberg/warehouse/iceberg_db/java_hdfs_table"
    val table: Table = hadoopTables.create(schema, partitionSpec, warehouseTablePath)


    // =============加载一个已经存在的表=========
    // val table: Table = hadoopTables.load(warehouseTablePath)

    // =============删除表=========
    // hadoopTables.dropTable(warehouseTablePath:String, purge:boolean)


  }
}

如果用scala执行,可以用以下命令

[root@hive1 ~]# scala -classpath flink_dev-1.0-SNAPSHOT.jar flink_test

你可能感兴趣的:(#,Iceberg,iceberg,hive,catalog,hadoop,catalog,hdfs,path,数据湖)