微服务间通讯有同步和异步两种方式:
同步通讯:就像打电话,需要实时响应。
异步通讯:就像发邮件,不需要马上回复。
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。
Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
总结:
同步调用的优点:
同步调用的问题:
异步调用则可以避免上述问题:
我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。
订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。
为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。
好处:
吞吐量提升:无需等待订阅者处理完成,响应更快速
故障隔离:服务没有直接调用,不存在级联失败问题
调用间没有阻塞,不会造成无效的资源占用
耦合度极低,每个服务都可以灵活插拔,可替换
流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件
缺点:
好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是MQ技术。
MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。
比较常见的MQ实现:
几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
---|---|---|---|---|
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量 | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性:Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力:RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
下载镜像
在线拉取
docker pull rabbitmq:3-management
安装
执行下面的命令来运行MQ容器:
docker run \
-e RABBITMQ_DEFAULT_USER=fate \
-e RABBITMQ_DEFAULT_PASS=200314 \
--name mq \
--hostname mq1 \
-p 15672:15672 \
-p 5672:5672 \
-d \
rabbitmq:3-management
运行之后就可以访问http://192.168.150.111:15672来到图形化界面进行管理
RabbitMQ中的一些角色:
RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:
简单队列模式的模型图:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
思路:
代码实现:
package cn.itcast.mq.helloworld;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.jupiter.api.Test;
import java.io.IOException;
import java.util.concurrent.TimeoutException;
public class PublisherTest {
@Test
public void testSendMessage() throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.150.111");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("fate");
factory.setPassword("200314");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.发送消息
String message = "hello, rabbitmq!";
channel.basicPublish("", queueName, null, message.getBytes());
System.out.println("发送消息成功:【" + message + "】");
// 5.关闭通道和连接
channel.close();
connection.close();
}
}
代码思路:
代码实现:
package cn.itcast.mq.helloworld;
import com.rabbitmq.client.*;
import java.io.IOException;
import java.util.concurrent.TimeoutException;
public class ConsumerTest {
public static void main(String[] args) throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.150.111");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("fate");
factory.setPassword("200314");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.订阅消息
channel.basicConsume(queueName, true, new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope,
AMQP.BasicProperties properties, byte[] body) throws IOException {
// 5.处理消息
String message = new String(body);
System.out.println("接收到消息:【" + message + "】");
}
});
System.out.println("等待接收消息。。。。");
}
}
基本消息队列的消息发送流程:
建立connection
创建channel
利用channel声明队列
利用channel向队列发送消息
基本消息队列的消息接收流程:
建立connection
创建channel
利用channel声明队列
定义consumer的消费行为handleDelivery()
利用channel将消费者与队列绑定
SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:https://spring.io/projects/spring-amqp
SpringAMQP提供了三个功能:
配置MQ地址:
spring:
rabbitmq:
host: 192.168.150.111
port: 5672
virtual-host: /
username: fate
password: 200314
测试类
package cn.itcast.mq;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {
@Autowired
private RabbitTemplate rabbitTemplate;
@Test
public void testSimpleQueue(){
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, spring amqp!";
// 发送消息
rabbitTemplate.convertAndSend(queueName, message);
}
}
可以看到,成功发送到了队列中
还是配置文件:
spring:
rabbitmq:
host: 192.168.150.111
port: 5672
virtual-host: /
username: fate
password: 200314
listener监听器:
package cn.itcast.mq.listener;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
/**
* @author m
*/
@Slf4j
@Component
public class SpringRabbitListener {
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException{
log.info("spring 消费者接收到消息:{}",msg);
}
}
运行之前的测试类发生消息,可以看到
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:
@Test
public void testWorkQueue() throws InterruptedException {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, message_";
for (int i = 0; i < 50; i++) {
// 发送消息
rabbitTemplate.convertAndSend(queueName, message + i);
Thread.sleep(20);
}
}
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
package cn.itcast.mq.listener;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
import java.time.LocalTime;
/**
* @author m
*/
@Slf4j
@Component
public class SpringRabbitListener {
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage1(String msg) throws InterruptedException{
log.info("spring 消费者1接收到消息:{}-->{}",msg, LocalTime.now());
Thread.sleep(20);
}
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage2(String msg) throws InterruptedException{
log.warn("spring 消费者2接收到消息:{}-->{}",msg, LocalTime.now());
Thread.sleep(400);
}
}
启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。
也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
spring:
rabbitmq:
listener:
simple:
prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
Work模型的使用:
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式下,消息发送流程是这样的:
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:
在consumer中创建一个类,声明队列和交换机:
package cn.itcast.mq.config;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Configuration;
/**
* @author m
*/
@Configuration
public class FanoutConfig {
/**
* 声明交换机
* @return Fanout类型交换机
*/
@Bean
public FanoutExchange fanoutExchange(){
return new FanoutExchange("itcast.fanout");
}
/**
* 第1个队列
*/
@Bean
public Queue fanoutQueue1(){
return new Queue("fanout.queue1");
}
/**
* 绑定队列和交换机
*/
@Bean
public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
}
/**
* 第2个队列
*/
@Bean
public Queue fanoutQueue2(){
return new Queue("fanout.queue2");
}
/**
* 绑定队列和交换机
*/
@Bean
public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
}
}
@Test
public void testSendFanoutExchange(){
String exchangeName = "itcast.fanout";
String massage="fanout____test";
rabbitTemplate.convertAndSend(exchangeName,"",massage);
}
@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueueMessage1(String msg) throws InterruptedException{
log.warn("spring 消费者2接收到fanout.queue1消息:{}-->{}",msg, LocalTime.now());
}
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueueMessage2(String msg) throws InterruptedException{
log.warn("spring 消费者2接收到fanout.queue2消息:{}-->{}",msg, LocalTime.now());
}
同时接受到了消息
交换机的作用
声明队列、交换机、绑定关系的Bean
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
RoutingKey
(路由key)RoutingKey
。Routing Key
进行判断,只有队列的Routingkey
与消息的 Routing key
完全一致,才会接收到消息基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue1"),
exchange = @Exchange(name = "itcast.direct",type = ExchangeTypes.DIRECT),
key = {"red", "blue"}
))
public void listenDirectQueueMessage1(String msg) throws InterruptedException{
log.warn("spring 消费者1接收到direct.queue1消息:{}-->{}",msg, LocalTime.now());
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue1"),
exchange = @Exchange(name = "itcast.direct",type = ExchangeTypes.DIRECT),
key = {"red", "yellow"}
))
public void listenDirectQueueMessage2(String msg) throws InterruptedException{
log.warn("spring 消费者1接收到direct.queue1消息:{}-->{}",msg, LocalTime.now());
}
@Test
public void testSendDirectExchange() {
// 交换机名称
String exchangeName = "itcast.direct";
// 消息
String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "red", message);
}
可以看到,key为red的队列同时进行了处理
Direct交换机与Fanout交换机的差异
基于@RabbitListener注解声明队列和交换机的常见注解
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!
Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert
通配符规则:
#
:匹配一个或多个词
*
:匹配不多不少恰好1个词
举例:
item.#
:能够匹配item.spu.insert
或者 item.spu
item.*
:只能匹配item.spu
解释:
china.#
,因此凡是以 china.
开头的routing key
都会被匹配到。包括china.news和china.weather#.news
,因此凡是以 .news
结尾的 routing key
都会被匹配。包括china.news和japan.news@Test
public void testSendTopicExchange() {
// 交换机名称
String exchangeName = "itcast.topic";
// 消息
String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue1"),
exchange = @Exchange(name = "itcast.topic",type = ExchangeTypes.TOPIC),
key = "china.#"
))
public void listenTopicQueueMessage1(String msg) throws InterruptedException{
log.warn("spring 消费者1接收到Topic.queue1消息:{}-->{}",msg, LocalTime.now());
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue2"),
exchange = @Exchange(name = "itcast.topic",type = ExchangeTypes.TOPIC),
key = "#.news"
))
public void listenTopicQueueMessage2(String msg) throws InterruptedException{
log.warn("spring 消费者1接收到Topic.queue2消息:{}-->{}",msg, LocalTime.now());
}
Direct交换机与Topic交换机的差异
**.**
分割#
:代表0个或多个词*
:代表1个词Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
在publisher和consumer两个服务中都引入依赖:
<dependency>
<groupId>com.fasterxml.jackson.dataformatgroupId>
<artifactId>jackson-dataformat-xmlartifactId>
<version>2.9.10version>
dependency>
配置消息转换器。
在启动类中添加一个Bean即可:
@Bean
public MessageConverter jsonMessageConverter(){
return new Jackson2JsonMessageConverter();
}