2013 年,Docker 项目正式发布。
2014 年,Kubernetes 项目也正式发布。因为有了容器和 Docker 之后,就需要有一种方式去帮助大家方便、快速、优雅地管理这些容器
2015 年,成立了 CNCF 云原生基金会。 Kubernetes 也成为了 CNCF 托管的第一个开源项目
2018 年,CNCF 成立三周年有了 195 个成员,19 个基金会项目和 11 个孵化项目,如此之快的发展速度在整个云计算领域都是非常罕见的。
Docker 项目发布开始说起,Docker 项目使得用户能够更好地、更完整地打包自己的应用,使得开发者可以轻而易举的获得了一个应用的最小可运行单位,而不需要依赖任何 PaaS 能力。这对经典 PaaS 产业其实是一个“降维打击”。
到了 2018 年的时候,云原生技术理念开始逐渐萌芽,这是因为此时 Kubernetes 以及容器都成为了云厂商的既定标准,以“云”为核心的软件研发思想逐步形成。
云原生其实是一套指导进行软件架构设计的思想。按照这样的思想而设计出来的软件:首先,天然就“生在云上,长在云上”;其次,能够最大化地发挥云的能力,使得我们开发的软件和“云”能够天然地集成在一起,发挥出“云”的最大价值。
未来的软件,会从诞生起就生长在云上,并且遵循一种新的软件开发、发布和运维模式,从而使得软件能够最大化地发挥云的能力。
其实,容器技术和集装箱技术的革命性非常类似,即:容器技术使得应用具有了一种“自包含”的定义方式。所以,这样的应用才能以敏捷的、以可扩展可复制的方式发布在云上,发挥出云的能力。这也就是容器技术对云发挥出的革命性影响所在,所以说,容器技术正是云原生技术的核心底盘。
云原生的技术范畴包括了以下几个方面:
IAAS基础设施即服务,通过internet从计算机基础设施获得服务 (硬件外包)
PAAS平台即服务,提供应用程序开发 (开发分发方案)
SAAS软件即服务,提供完整的应用程序
它们都在试着将各种软、硬件资源等抽象为一种服务提供给开发者使用,让他们不再担心基础设施、资源需求、中间件等等,在减轻心智负担的同时更好地专注于业务。
第一部分是云应用定义与开发流程。这包括应用定义与镜像制作、配置 CI/CD、消息和 Streaming 以及数据库等。
第二部分是云应用的编排与管理流程。这也是 Kubernetes 比较关注的一部分,包括了应用编排与调度、服务发现治理、远程调用、API 网关以及 Service Mesh。
第三部分是监控与可观测性。这部分所强调的是云上应用如何进行监控、日志收集、Tracing 以及在云上如何实现破坏性测试,也就是混沌工程的概念。
第四部分就是云原生的底层技术,比如容器运行时、云原生存储技术、云原生网络技术等。
第五部分是云原生工具集,在前面的这些核心技术点之上,还有很多配套的生态或者周边的工具需要使用,比如流程自动化与配置管理、容器镜像仓库、云原生安全技术以及云端密码管理等。
最后则是 Serverless。Serverless 是一种 PaaS 的特殊形态,它定义了一种更为“极端抽象”的应用编写方式,包含了 FaaS 和 BaaS 这样的概念。而无论是 FaaS 还是 BaaS,其最为典型的特点就是按实际使用计费(Pay as you go),因此 Serverless 计费也是重要的知识和概念。
第一个理论基础是:不可变基础设施。这一点目前是通过容器镜像来实现的,其含义就是应用的基础设施应该是不可变的,是一个自包含、自描述可以完全在不同环境中迁移的东西;
第二个理论基础就是:云应用编排理论。当前的实现方式就是 Google 所提出来的“容器设计模式”,这也是本系列课程中的 Kubernetes 部分所需主要讲解的内容。
不可变基础设施
大家可能经常会干这样一件事情,比如需要发布或者更新一个软件,那么流程大致是这样的,先通过 SSH 连到服务器,然后手动升级或者降级软件包,逐个调整服务器上的配置文件,并且将新代码直接都部署到现有服务器上。因此,这套基础设施会不断地被调整和修改。
但是在云上,对“云”友好的应用基础设施是不可变的。
这种场景下的上述更新过程会这么做:一旦应用部署完成之后,那么这套应用基础设施就不会再修改了。如果需要更新,那么需要现更改公共镜像来构建新服务直接替换旧服务。而我们之所以能够实现直接替换,就是因为容器提供了自包含的环境(包含应用运行所需的所有依赖)。所以对于应用而言,完全不需要关心容器发生了什么变化,只需要把容器镜像本身修改掉就可以了。因此,对于云友好的基础设施是随时可以替换和更换的,这就是因为容器具有敏捷和一致性的能力,也就是云时代的应用基础设施。
所以,总结而言,云时代的基础设施就像是可以替代的“牲口”,可以随时替换;而传统的基础设施则是独一无二的“宠物”,需要细心呵护,这就体现出了云时代不可变基础设施的优点。
1、基础设施的一致性和可靠性。同样一个镜像,无论是在美国打开,在中国打开,还是在印度打开都是一样的。并且其中的 OS 环境对于应用而言都是一致的。而对于应用而言,它就不需要关心容器跑在哪里,这就是基础设施一致性非常重要的一个特征。
2、这样的镜像本身就是自包含的,其包含了应用运行所需要的所有依赖,因此也可以漂移到云上的任何一个位置。
当我们回过头来看云原生关键技术点或者说它所依赖的技术理论的时候,可以看到主要有这样的四个方向:
如何构建自包含、可定制的应用镜像;
能不能实现应用快速部署与隔离能力;
应用基础设施创建和销毁的自动化管理;
可复制的管控系统和支撑组件。
这四个云原生关键技术点是落地实现云原生技术的四个主要途径,而这四个技术点也是本门课程的 17 个技术点所主要讲述的核心知识。
重点讲解的 Kubernetes 项目,则是整个“云原生”理念落地的核心与关键所在。它正在迅速成为连通“云”与“应用”的高速公路,以标准、高效的方式将“应用”快速交付到世界上任何一个位置
在介绍容器的具体概念之前,先简单回顾一下操作系统是如何管理进程的。
首先,当我们登录到操作系统之后,可以通过 ps 等操作看到各式各样的进程,这些进程包括系统自带的服务和用户的应用进程。那么,这些进程都有什么样的特点?
第一,这些进程可以相互看到、相互通信;
第二,它们使用的是同一个文件系统,可以对同一个文件进行读写操作;
第三,这些进程会使用相同的系统资源。
这样的三个特点会带来什么问题呢?
因为这些进程能够相互看到并且进行通信,高级权限的进程可以攻击其他进程;
因为它们使用的是同一个文件系统,因此会带来两个问题:这些进程可以对于已有的数据进行增删改查,具有高级权限的进程可能会将其他进程的数据删除掉,破坏掉其他进程的正常运行;此外,进程与进程之间的依赖可能会存在冲突,如此一来就会给运维带来很大的压力;
因为这些进程使用的是同一个宿主机的资源,应用之间可能会存在资源抢占的问题,当一个应用需要消耗大量 CPU 和内存资源的时候,就可能会破坏其他应用的运行,导致其他应用无法正常地提供服务。
容器就是一个视图隔离、资源可限制、独立文件系统的进程集合。所谓“视图隔离”就是能够看到部分进程以及具有独立的主机名等;控制资源使用率则是可以对于内存大小以及 CPU 使用个数等进行限制。容器就是一个进程集合,它将系统的其他资源隔离开来,具有自己独立的资源视图。
容器具有一个独立的文件系统,因为使用的是系统的资源,所以在独立的文件系统内不需要具备内核相关的代码或者工具,我们只需要提供容器所需的二进制文件、配置文件以及依赖即可。只要容器运行时所需的文件集合都能够具备,那么这个容器就能够运行起来。
综上所述,我们将这些容器运行时所需要的所有的文件集合称之为容器镜像。
那么,一般都是通过什么样的方式来构建镜像的呢?通常情况下,我们会采用 Dockerfile 来构建镜像,这是因为 Dockerfile 提供了非常便利的语法糖,能够帮助我们很好地描述构建的每个步骤。当然,每个构建步骤都会对已有的文件系统进行操作,这样就会带来文件系统内容的变化,我们将这些变化称之为 changeset。当我们把构建步骤所产生的变化依次作用到一个空文件夹上,就能够得到一个完整的镜像。
changeset 的分层以及复用特点能够带来几点优势:
第一,能够提高分发效率,简单试想一下,对于大的镜像而言,如果将其拆分成各个小块就能够提高镜像的分发效率,这是因为镜像拆分之后就可以并行下载这些数据;
第二,因为这些数据是相互共享的,也就意味着当本地存储上包含了一些数据的时候,只需要下载本地没有的数据即可,举个简单的例子就是 golang 镜像是基于 alpine 镜像进行构建的,当本地已经具有了 alpine 镜像之后,在下载 golang 镜像的时候只需要下载本地 alpine 镜像中没有的部分即可;
第三,因为镜像数据是共享的,因此可以节约大量的磁盘空间,简单设想一下,当本地存储具有了 alpine 镜像和 golang 镜像,在没有复用的能力之前,alpine 镜像具有 5M 大小,golang 镜像有 300M 大小,因此就会占用 305M 空间;而当具有了复用能力之后,只需要 300M 空间即可。
当有了 Dockerfile 之后,就可以通过 docker build 命令构建出所需要的应用。构建出的结果存储在本地,一般情况下,镜像构建会在打包机或者其他的隔离环境下完成。
那么,这些镜像如何运行在生产环境或者测试环境上呢?这时候就需要一个中转站或者中心存储,我们称之为 docker registry,也就是镜像仓库,其负责存储所有产生的镜像数据。我们只需要通过 docker push 就能够将本地镜像推动到镜像仓库中,这样一来,就能够在生产环境上或者测试环境上将相应的数据下载下来并运行了。
运行一个容器一般情况下分为三步:
第一步:从镜像仓库中将相应的镜像下载下来;
第二步:当镜像下载完成之后就可以通过 docker images 来查看本地镜像,这里会给出一个完整的列表,我们可以在列表中选中想要的镜像;
第三步:当选中镜像之后,就可以通过 docker run 来运行这个镜像得到想要的容器,当然可以通过多次运行得到多个容器。一个镜像就相当于是一个模板,一个容器就像是一个具体的运行实例,因此镜像就具有了一次构建、到处运行的特点。
简单回顾一下,容器就是和系统其它部分隔离开来的进程集合,这里的其他部分包括进程、网络资源以及文件系统等。而镜像就是容器所需要的所有文件集合,其具备一次构建、到处运行的特点。
容器是一组具有隔离特性的进程集合,在使用 docker run 的时候会选择一个镜像来提供独立的文件系统并指定相应的运行程序。这里指定的运行程序称之为 initial 进程,这个 initial 进程启动的时候,容器也会随之启动,当 initial 进程退出的时候,容器也会随之退出。
因此,可以认为容器的生命周期和 initial 进程的生命周期是一致的。当然,因为容器内不只有这样的一个 initial 进程,initial 进程本身也可以产生其他的子进程或者通过 docker exec 产生出来的运维操作,也属于 initial 进程管理的范围内。当 initial 进程退出的时候,所有的子进程也会随之退出,这样也是为了防止资源的泄漏。
但是这样的做法也会存在一些问题,首先应用里面的程序往往是有状态的,其可能会产生一些重要的数据,当一个容器退出被删除之后,数据也就会丢失了,这对于应用方而言是不能接受的,所以需要将容器所产生出来的重要数据持久化下来。容器能够直接将数据持久化到指定的目录上,这个目录就称之为数据卷。
数据卷有一些特点,其中非常明显的就是数据卷的生命周期是独立于容器的生命周期的,也就是说容器的创建、运行、停止、删除等操作都和数据卷没有任何关系,因为它是一个特殊的目录,是用于帮助容器进行持久化的。简单而言,我们会将数据卷挂载到容器内,这样一来容器就能够将数据写入到相应的目录里面了,而且容器的退出并不会导致数据的丢失。
通常情况下,数据卷管理主要有两种方式:
第一种是通过 bind 的方式,直接将宿主机的目录直接挂载到容器内;这种方式比较简单,但是会带来运维成本,因为其依赖于宿主机的目录,需要对于所有的宿主机进行统一管理。
第二种是将目录管理交给运行引擎。
moby 是目前最流行的容器管理引擎,moby daemon 会对上提供有关于容器、镜像、网络以及 Volume的管理。moby daemon 所依赖的最重要的组件就是 containerd,containerd 是一个容器运行时管理引擎,其独立于 moby daemon ,可以对上提供容器、镜像的相关管理。
containerd 底层有 containerd shim 模块,其类似于一个守护进程,这样设计的原因有几点:
首先,containerd 需要管理容器生命周期,而容器可能是由不同的容器运行时所创建出来的,因此需要提供一个灵活的插件化管理。而 shim 就是针对于不同的容器运行时所开发的,这样就能够从 containerd 中脱离出来,通过插件的形式进行管理。
其次,因为 shim 插件化的实现,使其能够被 containerd 动态接管。如果不具备这样的能力,当 moby daemon 或者 containerd daemon 意外退出的时候,容器就没人管理了,那么它也会随之消失、退出,这样就会影响到应用的运行。
最后,因为随时可能会对 moby 或者 containerd 进行升级,如果不提供 shim 机制,那么就无法做到原地升级,也无法做到不影响业务的升级,因此 containerd shim 非常重要,它实现了动态接管的能力。
VM 利用 Hypervisor 虚拟化技术来模拟 CPU、内存等硬件资源,这样就可以在宿主机上建立一个 Guest OS,这是常说的安装一个虚拟机。
每一个 Guest OS 都有一个独立的内核,比如 Ubuntu、CentOS 甚至是 Windows 等,在这样的 Guest OS 之下,每个应用都是相互独立的,VM 可以提供一个更好的隔离效果。但这样的隔离效果需要付出一定的代价,因为需要把一部分的计算资源交给虚拟化,这样就很难充分利用现有的计算资源,并且每个 Guest OS 都需要占用大量的磁盘空间,比如 Windows 操作系统的安装需要 10~30G 的磁盘空间,Ubuntu 也需要 5~6G,同时这样的方式启动很慢。正是因为虚拟机技术的缺点,催生出了容器技术。
容器是针对于进程而言的,因此无需 Guest OS,只需要一个独立的文件系统提供其所需要文件集合即可。所有的文件隔离都是进程级别的,因此启动时间快于 VM,并且所需的磁盘空间也小于 VM。当然了,进程级别的隔离并没有想象中的那么好,隔离效果相比 VM 要差很多。
总体而言,容器和 VM 相比,各有优劣,因此容器技术也在向着强隔离方向发展。