红黑树的学习

红黑树的学习

参考:https://mp.weixin.qq.com/s/-8JFh5iLr88XA4AJ9mMf6g

红黑树进阶

二叉查找树(BST)具备什么特性呢?

1.子树上所有结点的值均小于或等于它的根结点的值。

2.子树上所有结点的值均大于或等于它的根结点的值。

3.左、右子树也分别为二叉排序树。

红黑树

R-B Tree,全称是 Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每

个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

红黑树的基本特性

1.节点是红色或黑色。

2.根节点是黑色。

3.每个叶子节点都是黑色的空节点(NIL节点)。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

正是因为这些规则限制,才保证了红黑树的自平衡。红黑树从根到叶子的最长路径不会超过最短路径的2倍。

右旋转:

顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:

红黑树的学习_第1张图片

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

左旋转:

逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:

红黑树的学习_第2张图片

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

变色:

为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。

添加

第一步: 将红黑树当作一颗二叉查找树,将节点插入。

第二步:将插入的节点着色为"红色"。

根据被插入节点的父节点的情况,可以将"当节点 z 被着色为红色节点,并插入二叉树"划分为三

种情况来处理。

① 情况说明:被插入的节点是根节点。

处理方法:直接把此节点涂为黑色。

② 情况说明:被插入的节点的父节点是黑色。

处理方法:什么也不需要做。节点被插入后,仍然是红黑树

③ 情况说明:被插入的节点的父节点是红色。这种情况下,被插入节点是一定存在非空祖父节点

的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节

点本身就是黑色节点)。理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为 3

种情况(Case)。

红黑树的学习_第3张图片

删除

第一步:将红黑树当作一颗二叉查找树,将节点删除。

这和"删除常规二叉查找树中删除节点的方法是一样的"。分 3 种情况:

① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就 OK 了。

② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。

③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给

“该节点的内容”;之后,删除“它的后继节点”。

第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。

因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正

该树,使之重新成为一棵红黑树。

选择重着色 3 种情况。

① 情况说明:x 是“红+黑”节点。

处理方法:直接把 x 设为黑色,结束。此时红黑树性质全部恢复。

② 情况说明:x 是“黑+黑”节点,且 x 是根。

处理方法:什么都不做,结束。此时红黑树性质全部恢复。

③ 情况说明:x 是“黑+黑”节点,且 x 不是根。

处理方法:这种情况又可以划分为 4 种子情况。这 4 种子情况如下表所示:

红黑树的学习_第4张图片

你可能感兴趣的:(#,集合,红黑树,java,数据结构)