MindSpore报错"RuntimeError: Unable to data from Generator.."

1 报错描述1.1 系统环境ardware Environment(Ascend/GPU/CPU): CPUSoftware Environment:– MindSpore version (source or binary): 1.6.0– Python version (e.g., Python 3.7.5): 3.7.6– OS platform and distribution (e.g., Linux Ubuntu 16.04): Ubuntu 4.15.0-74-generic– GCC/Compiler version (if compiled from source):1.2 基本信息1.2.1脚本此案例使用自定义可迭代数据集进行训练,在训练过程中,第一个epoch数据正常迭代,第二个epoch就会报错,自定义数据代码如下:import numpy as np
import mindspore.dataset as ds
from tqdm import tqdm

class IterDatasetGenerator:

def __init__(self, datax, datay, classes_per_it, num_samples, iterations):
    self.__iterations = iterations
    self.__data = datax
    self.__labels = datay
    self.__iter = 0
    self.classes_per_it = classes_per_it
    self.sample_per_class = num_samples
    self.classes, self.counts = np.unique(self.__labels, return_counts=True)
    self.idxs = range(len(self.__labels))
    self.indexes = np.empty((len(self.classes), max(self.counts)), dtype=int) * np.nan
    self.numel_per_class = np.zeros_like(self.classes)
    for idx, label in tqdm(enumerate(self.__labels)):
        label_idx = np.argwhere(self.classes == label).item()
        self.indexes[label_idx, np.where(np.isnan(self.indexes[label_idx]))[0][0]] = idx
        self.numel_per_class[label_idx] = int(self.numel_per_class[label_idx]) + 1

def __next__(self):
    spc = self.sample_per_class
    cpi = self.classes_per_it

    if self.__iter >= self.__iterations:
        raise StopIteration
    else:
        batch_size = spc * cpi
        batch = np.random.randint(low=batch_size, high=10 * batch_size, size=(batch_size), dtype=np.int64)
        c_idxs = np.random.permutation(len(self.classes))[:cpi]
        for i, c in enumerate(self.classes[c_idxs]):
            index = i*spc
            ci = [c_i for c_i in range(len(self.classes)) if self.classes[c_i] == c][0]
            label_idx = list(range(len(self.classes)))[ci]
            sample_idxs = np.random.permutation(int(self.numel_per_class[label_idx]))[:spc]
            ind = 0
            for i in sample_idxs:
                batch[index+ind] = self.indexes[label_idx]
                ind = ind + 1
        batch = batch[np.random.permutation(len(batch))]
        data_x = []
        data_y = []
        for b in batch:
            data_x.append(self.__data)
            data_y.append(self.__labels)
        self.__iter += 1
        item = (data_x, data_y)
        return item

def __iter__(self):
    return self

def __len__(self):
    return self.__iterations

np.random.seed(58)
data1 = np.random.sample((500,2))
data2 = np.random.sample((500,1))
dataset_generator = IterDatasetGenerator(data1,data2,5,10,10)
dataset = ds.GeneratorDataset(dataset_generator,["data","label"],shuffle=False)
epochs=3
for epoch in range(epochs):

for data in dataset.create_dict_iterator():
    print("success")

1.2.2报错报错信息:RuntimeError: Exception thrown from PyFunc. Unable to fetch data from GeneratorDataset, try iterate the source function of GeneratorDataset or check value of num_epochs when create iterator.
MindSpore报错
2 原因分析每次数据迭代的过程中,self.__iter会累加,第二个epoch的预取时,self.__iter已经累计到设置好的iterations的值,导致self.__iter >= self.__iterations,循环结束。3 解决方法在def iter(self):中加入清零操作,设置self.__iter = 0
MindSpore报错
此时执行成功,输出如下:
MindSpore报错
4 类似问题在mindspore1.3.0中,用户自定义训练,使用Generator dataset迭代数据报错。错误截图如下:
MindSpore报错
此报错中,dataset 的 len 函数返回值是36,但是真实的 next 返回的数据量只有35条,导致报错,可将返回值改为小于35的数进行快速验证。5 总结5.1 定位报错问题的步骤1、找到报错的用户代码行:for data in dataset.create_dict_iterator():;2、根据报错信息提示,无法从GeneratorDataset获取数据,检查是否在自定义数据的时候就出现问题。打印运行中的过程数据,发现第一个epoch数据读取完后,真实读取的数据条数与__len__是相等的,没有问题。但由于没有清零操作,在第二个epoch预取时self.__iter >= self.__iterations,循环结束,导致第二个epoch取不到数据报错。5.2 此类问题分析此类问题的根本原因是需要获取的数据索引与数据量对不上,在构造可迭代的的数据集类时需要注意每次运行后数据清零的问题,在快速验证时,也需要满足索引小于数据总量的条件。6 参考文档mindspore文档->数据管道->数据加载->自定义数据集加载->构造可迭代的数据集类https://www.mindspore.cn/doc/...

你可能感兴趣的:(人工智能深度学习机器学习算法)